

FEATURES

- SMD Package with Industry Standard Pinout
- Package Dimension:
 - 32.3 x 14.8 x 10.2 mm (1.27x 0.58x 0.38 inches)
- Wide 2:1 Input Range
- Efficiency up to 83%
- I/O-isolation 1500VDC
- Operating Temp. Range -40°C to +85°C
- Qualified for lead-free Reflow Solder Process according IPC/JEDEC J-STD-020D.1
- 3 Years Product Warranty

PRODUCT OVERVIEW

The MINMAX MSIW1000 series is a range of isolated 3W DC/DC converter modules featuring fully regulated output voltages and wide 2:1 input voltage ranges.

These products are in a low profile SMD package with dimensions of 32.3 x 14.8 x 10.2 mm. All models are qualified for lead free reflow solder processes according IPC J-STD-020D.1. An excellent efficiency allows an operating temperature range of 40° to +85°C (with derating).

Typical applications for these converters are battery operated equipment and instrumentation, communication and general industrial electronics.

Model Selection Guide

Model Number	Input Voltage	Output Voltage	Output Current Input Current		Reflected Ripple	Max. capacitive Load	Efficiency (typ.)		
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%
MSIW1021		3.3	700	70	257		25	4700	75
MSIW1022		5	600	60	316				79
MSIW1023		12	250	25	305	20			82
MSIW1024	12 (9 ~ 18)	15	200	20	305				82
MSIW1025	(3 10)	±5	±300	±30	321			180#	78
MSIW1026		±12	±125	±12.5	309				81
MSIW1027		±15	±100	±10	309				81
MSIW1031	24 (18 ~ 36)	3.3	700	70	127	5	15	4700	76
MSIW1032		5	600	60	156				80
MSIW1033		12	250	25	151				83
MSIW1034		15	200	20	151				83
MSIW1035		±5	±300	±30	158				79
MSIW1036		±12	±125	±12.5	152				82
MSIW1037		±15	±100	±10	152				82
MSIW1041	48 - (36 ~ 75)	3.3	700	70	63			4700	76
MSIW1042		5	600	60	78				80
MSIW1043		12	250	25	75				83
MSIW1044		15	200	20	75	3	10		83
MSIW1045		±5	±300	±30	79				79
MSIW1046		±12	±125	±12.5	76	1		180#	82
MSIW1047		±15	±100	±10	76				82

For each output

MSIW1000 SERIES

DC/DC CONVERTER 3W, SMD-Package

Input Specifications

input opcontoutions						
Parameter	Model	Min.	Тур.	Max.	Unit	
	12V Input Models	-0.7		25		
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50		
	48V Input Models	-0.7		100		
	12V Input Models	4.5	6	8		
Start-Up Threshold Voltage	24V Input Models	8	12	18	VDC	
	48V Input Models	16	24	36]	
	12V Input Models			8	-	
Under Voltage Shutdown	24V Input Models			16		
	48V Input Models			32		
Reverse Polarity Input Current				0.5	A	
Short Circuit Input Power	All Models			1500	mW	
Internal Filter Type		Pi Filter				
Internal Power Dissipation				2500	mW	

Output Specifications							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
Output Voltage Setting Accuracy				±1.0	%Vom.		
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%		
Line Regulation	Vin=Min. to Max. @Full Load		±0.1	±0.3	%		
Load Regulation	lo=10% to 100%		±0.3	±1.0	%		
Ripple & Noise	0-20 MHz Bandwidth			75	mV _{P-P}		
Transient Recovery Time	25% Load Stop Change		200	500	µsec		
Fransient Response Deviation			±2	±6	%		
Temperature Coefficient			±0.01	±0.02	%/°C		
Short Circuit Protection			Conti	nuous			

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage	60 Seconds	1500			VDC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100KHz, 1V		65	100	pF	
Switching Frequency			300		KHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000		Hours		
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1	Level 2				
Safety Approvals UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-scheme)			1(CB-scheme)			

Environmental Specifications

Parameter	Conditions	Min.	Max.	Unit		
Operating Ambient Temperature Range	Natural Convertion	40	. 05	° C		
(See Power Derating Curve)	Natural Convection	-40	C0+	C		
Case Temperature			+90	C°		
Storage Temperature Range		-50	+125	°C		
Humidity (non condensing)			95	% rel. H		
Cooling		Free-Air convection				
Lead Temperature (1.5mm from case for 10Sec.)			260	°C		

MSIW1000 SERIES

DC/DC CONVERTER 3W, SMD-Package

Power Derating Curve

Notes

F

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact factory.
- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 7 It is not recommended to use water-washing process on SMT units.
- 8 Specifications are subject to change without notice.

Package Specifications

Pin Connection	S		Physical Characteris	stics	
Pin	Single Output	Dual Output	Case Size	:	32.3x14.8x10.2mm (1.27x0.58x0.4 inches)
1,2	-Vin	-Vin			
3,11,14,22	NC	NC	Case Material	:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
10	NC	Common			
12	NC	-Vout	Pin Material	:	phosphor bronze
13	+Vout	+Vout			
15	-Vout	Common	Weight	:	8.8g
23,24	+Vin	+Vin			

NC : No Connection

E-mail:sales@minmax.com.tw Tel:886-6-2923150

2014/11/17 REV:5 Page 3 of 4

www.minmax.com.tw

MSIW1000 SERIES

Test Setup

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7μH) and Cin (220μF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Technical Notes

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 3.3μ F for the 12V input devices and a 1.5μ F for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Maximum Capacitive Load

The MSIW1000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 180µF maximum capacitive load for dual outputs and 4700µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

Minmax Technology Co., Ltd. 2014/11/17 REV:5 Page 4 of 4