PME-xxxxTLF

PSD-SERIES

Rev.04-2009

- √ 1 Watt
- ✓ Unregulated
- ✓ Single Output
- ✓ SMD Case Full Pin
- √ 1 kV DC I/O Isolation
- ✓ Low Ripple and Noise

Mainzer Straße 151–153
D-55299 Nackenheim
Tel. +49 6135 7026-0
Fax: +49 6135 931070
www.peak-electronics.de
peak@peak-electronics.de

The PSD series is a family of cost effective 1 W single output DC/DC converters. These converters are in an ultra miniature SMD full-pin case. Devices are encapsulated. High performance features: 1000VDC input/output isolation, industrial standard pinout, high power density, no heat sink required

All specifications typical at Ta=25°C, nominal input voltage and full load unless otherwise specified

Input Specifications

Voltage Range ± 10%
Input Filter Capacitors

Output Specifications

Voltage Accuracy ± 3% Short Circuit Protection Short Term

Line Regulation 3.3 Vout ± 1.5%, max. (For Vin Change of 1%)

Others ± 1.2%, max. (For Vin Change of 1%)

Load Regulation (10% - 100%) 3.3 Vout 20%, max.

5 Vout 15%, max. 9, 12, 15, 24 Vout 10%, max.

Ripple and Noise (20Mhz bandwidth) 75 mV pk-pk, max.

Temperature Coefficient ± 0.03% / ℃

General Specifications

Efficiency See Table I/O Isolation Voltage (3 sec.) 1000 VDC I/O Isolation Resistance (Tested at 500 VDC) 1000 M Ohm

Switching Frequency 100 kHz, typ (5, 12 Vin); 500 kHz (24Vin)

Humidity 95% rel H
Reliability Calculated MTBF (MIL-HDBK-217F) > 3500 khrs

Physical Specifications

Case Material Non Conductive Black Plastic (UL94V-0 rated)

Potting Material Epoxy (UL94V-0 rated)

Weight ~ 1.4g, max.

Environment Specifications

Operating Temperature -40 to +85 °C (ambient)

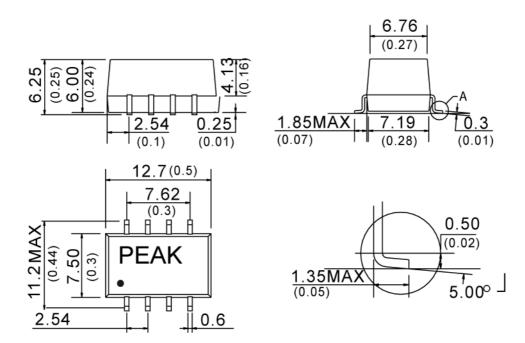
Storage Temperature -55 to +125 ℃

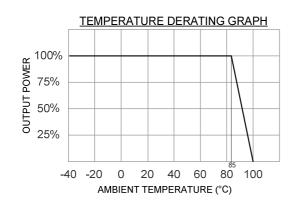
Cooling Free Air Convection (10mm distance required)

Soldering Not usable for heat steam soldering

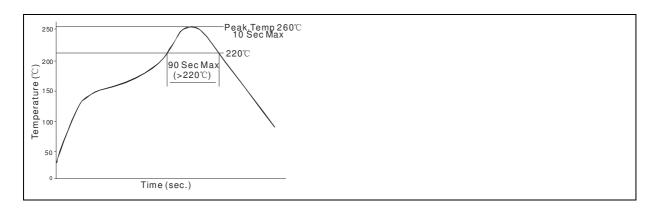
RoHS Conform

Selection Guide Single Output


		NDCI	ne (VDC)	max. (mA)	t min. (mA)
Order#	Input Voltag	Output Volta	Ontont Critery Ge (ADC)	Ontont Course Ontont Course	Efficiency (%)
SINGLE OUTPUT					
PME-3R33R3TLF	3.3	3.3	303	30	73
PME-3R305TLF	3.3	5	200	20	74
PME-053R3TLF	5	3.3	303	30	72
PME-0505TLF	5	5	200	20	77
PME-0509TLF	5	9	111	12	76
PME-0512TLF	5	12	84	9	79
PME-0515TLF	5	15	67	7	78
PME-1205TLF	12	5	200	20	69
PME-1209TLF	12	9	111	12	73
PME-1212TLF	12	12	84	9	73
PME-1215TLF	12	15	67	7	74
PME-243R3TLF	24	3.3	300	30	69
PME-2405TLF	24	5	200	20	70
PME-2409TLF	24	9	110	11	72
PME-2412TLF	24	12	83	8	75
PME-2415TLF	24	15	67	7	76
PME-2424TLF	24	24	42	4	77

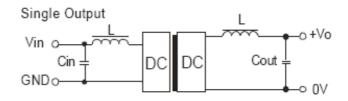

If you need other specifications, please enquire.

Notes:	


Package / Pinning / Derating

PIN CONNECTIONS			
#	SINGLE		
1	- Vin		
2	+Vin		
4	- Vout		
5	+Vout		
Others	N.C.		

Reflow:


App Notes

Requirement on output load

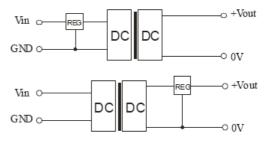
To ensure this module can operate efficiently and reliably, during operation, the minimum output load is **not less than 10%** of the full load, and that **this product should never be operated under no-load!** If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load.

Recommended testing circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends if the DC/DC converter, see Figure on the right hand side.

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a start-up problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the greatest capacitance of its filter capacitor sees (see Table).

Output Voltage Regulation and Over-voltage Protection Circuit


The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series.

EXTERNAL CAPACITOR TABLE					
Vin (VDC)	Cin (uF)	Vout (VDC)	Cout (uF)		
3.3 / 5	4.7	3.3 / 5	10		
12	2.2	9	4.7		
24	0.47	12	2.2		
	-	15	1		
		24	0.47		
1.1					

It's not recommend to connect any external capacitor in the application field with less than 0.5 watt output.

Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against over-current and short-circuits. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

No parallel connection or plug and play.