Total Power International, Inc.

MSDW1000 SERIES

DC/DC CONVERTER 2W, SMD Package

FEATURES

- Small Footprint:
 - 24.0 x 18.1 mm (0.94 x 0.71 inches)
- Wide 2:1 Input Range
- Fully regulated Output
- Operating Temp. Range –40°C to +85°C
- Short Circuit Protection
- I/O-isolation 1500 VDC
- Input Filter meets EN55022, class A and FCC, level A
- Qualified for lead-free reflow solder process according IPC/JEDEC J-STD-020D
- 3 Years Product Warranty

PRODUCT OVERVIEW

The MSDW1 series is a range of isolated 2W DC/DC converter modules featuring fully regulated output voltages and wide 2:1 input voltage ranges. The products come in a compact SMD package with a small footprint and low package height of just 8.0 mm (0.31 inch). All models are qualified for lead free reflow solder processes according IPC J-STD-020D standard.

An excellent efficiency allows an operating temperature range of -40°C to +85°C. The compact dimensions of these DC/DC converters make them an ideal solution for many space critical applications in battery-powered equipment and instrumentation.

Model Selection Guide

Model	Input	Output	Output Current Input Curre		urrent Reflected	Max. capacitive	Efficiency		
Number	Voltage	Voltage					Ripple	Load	(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	uF	%
MSDW1011		3.3	500	125	471	40	100	2200	70
MSDW1012		5	400	100	548			1000	73
MSDW1013	E	12	167	42	534			170	75
MSDW1014	5	15	134	33	582			110	73
MSDW1015	(4.5 ~ 9)	±5	±200	±50	667			470#	64
MSDW1016		±12	±83	±21	615			100#	69
MSDW1017		±15	±67	±17	598			47#	71
MSDW1021		3.3	500	125	184		25	2200	73
MSDW1022	12 (9 ~ 18)	5	400	100	217	20		1000	77
MSDW1023		12	167	42	209			170	80
MSDW1024		15	134	33	220			110	80
MSDW1025		±5	±200	±50	242			470#	73
MSDW1026		±12	±83	±21	224			100#	78
MSDW1027		±15	±67	±17	226			47#	78
MSDW1031	24 (18 ~ 36)	3.3	500	125	96			2200	72
MSDW1032		5	400	100	109			1000	77
MSDW1033		12	167	42	109			170	80
MSDW1034		15	134	33	108	10	15	110	81
MSDW1035		±5	±200	±50	119			470#	74
MSDW1036		±12	±83	±21	112			100#	78
MSDW1037		±15	±67	±17	110			47#	80
MSDW1041	48	3.3	500	125	49			2200	71
MSDW1042		5	400	100	57			1000	73
MSDW1043		12	167	42	53			170	79
MSDW1044		15	134	33	55	8	10	110	79
MSDW1045	(36 ~ 75)	±5	±200	±50	62			470#	71
MSDW1046		±12	±83	±21	57			100#	77
MSDW1047		±15	±67	±17	57			47#	77

For each output

P Total Power International, Inc.

MSDW1000 SERIES

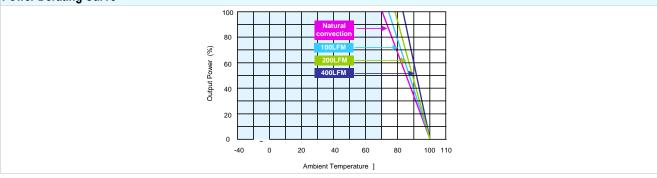
DC/DC CONVERTER 2W, SMD-Package

Input Specifications							
Parameter	Model	Min.	Тур.		Max.	Unit	
	5V Input Models	-0.7			11		
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7			25		
input Suige Voltage (1 Sec. max.)	24V Input Models	-0.7			50		
	48V Input Models	-0.7			100		
	5V Input Models	3.5	4		4.5		
	12V Input Models	4.5	7	7 9			
Start-Up Voltage	24V Input Models	8	12		18	VDC	
	48V Input Models	16	24		36		
	5V Input Models		3.5		4		
	12V Input Models		6.5		8.5		
Under Voltage Shutdown	24V Input Models		11		17		
	48V Input Models		22		34		
Reverse Polarity Input Current					1	А	
Short Circuit Input Power					1500	mW	
Internal Power Dissipation	All Models				1800	mW	
Conducted EMI			pliance to EN 55	022 class A a			
		COIL		022,01033 A d	iu i oo part io,		
Output Specifications							
Parameter	Conditions	Min.	Тур.		Max.	Unit	
Output Voltage Accuracy			±1.0		±2.0	%	
Output Voltage Balance	Dual Output, Balanced Loads		±1.0		±2.0	%	
Line Regulation	Vin=Min. to Max.		±0.3		±0.5	%	
Load Regulation	lo=25% to 100%		±0.5		±0.75	%	
Ripple & Noise (20MHz)			30		50	mV _{P-P}	
Ripple & Noise (20MHz)	Over Line, Load & Temp.				75	mV _{P-P}	
Ripple & Noise (20MHz)			100		15	mV rms	
Transient Recovery Time	25% Load Step Change				300	uS	
Transient Response Deviation			±3		±5	%	
Temperature Coefficient Short Circuit Protection			±0.01 ±0.02 %/ Continuous			%/°C	
				Continuous			
General Specifications							
Parameter	Conditions		Min.	Тур.	Max.	Unit	
I/O Isolation Voltage (rated)	60 Seconds		1500			VDC	
I/O Isolation Resistance	500 VDC		1000			MΩ	
I/O Isolation Capacitance				250	420	pF	
witching Frequency				300	420	KHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Groun	d Benian	1,000,000			Hours	
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020				Level 2		
	IF 0/JEDEC J-31D-0201			Lt	5VGI Z		
Input Fuse							
5V Input Models	12V Input Models	24\/ In	put Models		48V Input N	odole	

5V Input Models	5V Input Models 12V Input Models		48V Input Models
1000mA Slow-Blow Ty	pe 500mA Slow-Blow Type	250mA Slow-Blow Type	120mA Slow-Blow Type

Curring and a stal	Cussifientions
Environmental	Specifications

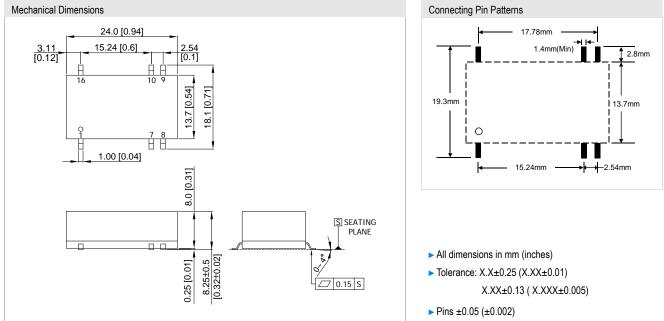
vironmental Specifications				
Parameter	Conditions	Min.	Max.	Unit
Operating Temperature Range (with Derating)	Ambient	-40	+85	C°
Case Temperature			+90	C°
Storage Temperature Range		-50	+125	C°
Humidity (non condensing)			95	% rel. H
Cooling	Free-Air convection			
Lead Temperature (1.5mm from case for 10Sec.)			260	C°



P Total Power International, Inc.

MSDW1000 SERIES

DC/DC CONVERTER 2W, SMD-Package


Power Derating Curve

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 Ripple & Noise measurement bandwidth is 0-20MHz.
- 4 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 5 All DC/DC converters should be externally fused at the front end for protection.
- 6 Other input and output voltage may be available, please contact factory.
- 7 Specifications subject to change without notice.
- 8 It is not recommended to use water-washing process on SMT units.

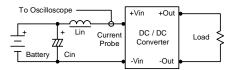
Package Specifications

Pin Connections						
Pin	Single Output	Dual Output				
1	-Vin	-Vin				
7	NC	NC Common				
8	NC					
9	+Vout	+Vout				
10	-Vout	-Vout				
16	+Vin	+Vin				

NC : No Connection

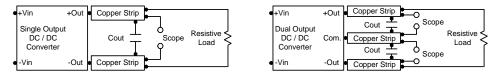
Physical Characteristics		
Case Size	:	24.0x13.7x8.0mm (0.94x0.54x0.31 Inches)
Case Material	:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Weight	:	5.1g

MSDW1000 SERIES


DC/DC CONVERTER 2W, SMD-Package

Test Configurations

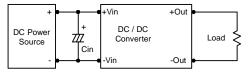
Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance.

Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.


Design & Feature Considerations

Overcurrent Protection

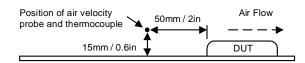
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 8.2uF for the 5V input devices, a 3.3uF for the 12V input devices and a 1.5uF for the 24V and 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.



Maximum Capacitive Load

The MSDW1000 series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

