

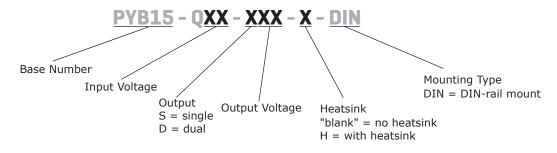
date 08/18/2014

page 1 of 7

# SERIES: PYB15-DIN | DESCRIPTION: DC-DC CONVERTER

#### **FEATURES**

- up to 15 W isolated output
- industry standard pinout
- 4:1 input range (9~36 Vdc, 18~75 Vdc)
- smaller package
- single/dual regulated outputs
- 1,500 Vdc isolation
- continuous short circuit, over current protection, over voltage protection
- reverse polarity protection
- temperature range (-40~85°C)
- six-sided metal shielding
- efficiency up to 88%






| MODEL             |                     | nput<br>oltage | output<br>voltage |             | ıtput<br>rrent | output<br>power | ripple<br>and noise <sup>1</sup> | efficiency        |
|-------------------|---------------------|----------------|-------------------|-------------|----------------|-----------------|----------------------------------|-------------------|
|                   | <b>typ</b><br>(Vdc) | range<br>(Vdc) | (Vdc)             | min<br>(mA) | max<br>(mA)    | max<br>(W)      | <b>max</b><br>(mVp-p)            | <b>typ</b><br>(%) |
| PYB15-Q24-S3-DIN  | 24                  | 9~36           | 3.3               | 200         | 4000           | 13.2            | 100                              | 85                |
| PYB15-Q24-S5-DIN  | 24                  | 9~36           | 5                 | 150         | 3000           | 15              | 100                              | 88                |
| PYB15-Q24-S12-DIN | 24                  | 9~36           | 12                | 63          | 1250           | 15              | 100                              | 87                |
| PYB15-Q24-S15-DIN | 24                  | 9~36           | 15                | 50          | 1000           | 15              | 100                              | 87                |
| PYB15-Q24-S24-DIN | 24                  | 9~36           | 24                | 31          | 625            | 15              | 100                              | 88                |
| PYB15-Q24-D5-DIN  | 24                  | 9~36           | ±5                | ±75         | ±1500          | 15              | 100                              | 84                |
| PYB15-Q24-D12-DIN | 24                  | 9~36           | ±12               | ±32         | ±625           | 15              | 100                              | 86                |
| PYB15-Q24-D15-DIN | 24                  | 9~36           | ±15               | ±25         | ±500           | 15              | 100                              | 86                |
| PYB15-Q48-S3-DIN  | 48                  | 18~75          | 3.3               | 200         | 4000           | 13.2            | 100                              | 85                |
| PYB15-Q48-S5-DIN  | 48                  | 18~75          | 5                 | 150         | 3000           | 15              | 100                              | 87                |
| PYB15-Q48-S12-DIN | 48                  | 18~75          | 12                | 63          | 1250           | 15              | 100                              | 86                |
| PYB15-Q48-S15-DIN | 48                  | 18~75          | 15                | 50          | 1000           | 15              | 100                              | 88                |
| PYB15-Q48-D5-DIN  | 48                  | 18~75          | ±5                | ±75         | ±1500          | 15              | 100                              | 84                |
| PYB15-Q48-D12-DIN | 48                  | 18~75          | ±12               | ±32         | ±625           | 15              | 100                              | 86                |
| PYB15-Q48-D15-DIN | 48                  | 18~75          | ±15               | ±25         | ±500           | 15              | 100                              | 87                |

Notes: 1. Ripple and noise are measured at 20 MHz BW by "parallel cable" method with 1 µF ceramic and 10 µF electrolytic capacitors on the output.

### **PART NUMBER KEY**



# **INPUT**

| parameter               | conditions/description                                                | min                  | typ      | max       | units      |
|-------------------------|-----------------------------------------------------------------------|----------------------|----------|-----------|------------|
| operating input voltage | 24 Vdc input models<br>48 Vdc input models                            | 9<br>18              | 24<br>48 | 36<br>75  | Vdc<br>Vdc |
| start-up voltage        | 24 Vdc input models<br>48 Vdc input models                            |                      |          | 9<br>17.8 | Vdc<br>Vdc |
| under voltage shutdown¹ | 24 Vdc input models<br>48 Vdc input models                            | 7.5<br>16            |          |           | Vdc<br>Vdc |
| surge voltage           | for maximum of 1 second<br>24 Vdc input models<br>48 Vdc input models | -0.7<br>-0.7         |          | 50<br>100 | Vdc<br>Vdc |
| start-up time           | nominal input, constant load                                          |                      | 10       |           | ms         |
| filter                  | pi filter                                                             |                      |          |           |            |
|                         | models ON (CTRL open or connect TTL hig                               | h level, 2.5~12 Vdc) |          |           |            |
| CTRL <sup>2</sup>       | models OFF (CTRL connect GND or low lev                               | el, 0~1.2 Vdc)       |          |           |            |
|                         | input current (models OFF)                                            |                      | 1        |           | mA         |

Notes:

- 1. Contact CUI if you are planning to use this feature in your application. 2. CTRL pin voltage is referenced to GND.

# **OUTPUT**

| parameter                    | conditions/description                                                                | min | typ  | max   | units |
|------------------------------|---------------------------------------------------------------------------------------|-----|------|-------|-------|
| line regulation              | full load, input voltage from low to high                                             |     | ±0.2 | ±0.5  | %     |
| load regulation              | 5% to 100% load                                                                       |     | ±0.5 | ±1    | %     |
| cross regulation             | dual output models:<br>main output 50% load, secondary output from 5%<br>to 100% load |     |      | ±5    | %     |
| voltage accuracy             |                                                                                       |     | ±1   | ±3    | %     |
| voltage balance              | dual output, balanced loads                                                           |     | ±0.5 | ±1    | %     |
| adjustability³               |                                                                                       |     | ±10  |       | %     |
| switching frequency          | PWM mode                                                                              |     | 300  |       | kHz   |
| transient recovery time      | 25% load step change                                                                  |     | 300  | 500   | μs    |
| transient response deviation | 25% load step change                                                                  |     | ±3   | ±5    | %     |
| temperature coefficient      | 100% load                                                                             |     |      | ±0.02 | %/°C  |
|                              |                                                                                       |     |      |       |       |

# **PROTECTIONS**

| parameter                | conditions/description                 | min | typ | max | units |
|--------------------------|----------------------------------------|-----|-----|-----|-------|
| short circuit protection | hiccup, continuous, automatic recovery |     |     |     |       |
| over current protection  |                                        |     | 160 |     | %     |
|                          | 3.3 Vdc output models                  |     | 3.9 |     | Vdc   |
|                          | 5 Vdc output models                    |     | 6.2 |     | Vdc   |
| over voltage protection  | 12 Vdc output models                   |     | 15  |     | Vdc   |
|                          | 15 Vdc output models                   |     | 18  |     | Vdc   |
|                          | 24 Vdc output models                   |     | 30  |     | Vdc   |

<sup>3.</sup> Output trimming available on single output models only.

# **SAFETY AND COMPLIANCE**

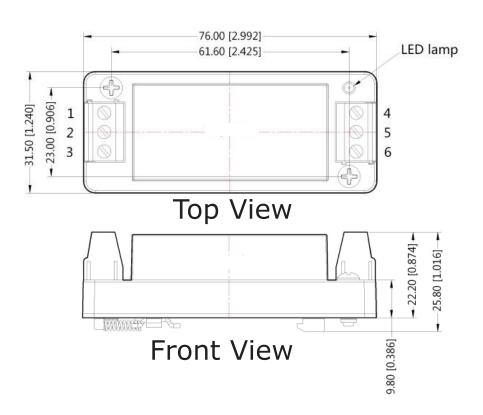
| parameter                    | conditions/description                        | min                                                                           | typ         | max | units |  |
|------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|-------------|-----|-------|--|
| isolation voltage            | for 1 minute at 1 mA max.                     | 1,500                                                                         |             |     | Vdc   |  |
| isolation resistance         | at 500 Vdc                                    | 1,000                                                                         |             |     | MΩ    |  |
| conducted emissions          | CISPR22/EN55022, class A, class B (exteri     | CISPR22/EN55022, class A, class B (external circuit required, see Figure 1-b) |             |     |       |  |
| radiated emissions           | CISPR22/EN55022, class A, class B (exteri     | nal circuit required, see                                                     | Figure 1-b) |     |       |  |
| ESD                          | IEC/EN61000-4-2, class B, contact ± 4kV       | IEC/EN61000-4-2, class B, contact ± 4kV                                       |             |     |       |  |
| radiated immunity            | IEC/EN61000-4-3, class A, 10V/m               | IEC/EN61000-4-3, class A, 10V/m                                               |             |     |       |  |
| EFT/burst                    | IEC/EN61000-4-4, class B, $\pm$ 2kV (external | Il circuit required, see F                                                    | igure 1-a)  |     |       |  |
| surge                        | IEC/EN61000-4-5, class B, ± 2kV (externa      | Il circuit required, see F                                                    | igure 1-a)  |     |       |  |
| conducted immunity           | IEC/EN61000-4-6, class A, 3 Vr.m.s            |                                                                               |             |     |       |  |
| voltage dips & interruptions | IEC/EN61000-4-29, class B, 0%-70%             |                                                                               |             |     |       |  |
| MTBF                         | as per MIL-HDBK-217F @ 25°C                   | 1,000,000                                                                     |             |     | hours |  |
| RoHS                         | 2011/65/EU                                    |                                                                               |             |     |       |  |

# **ENVIRONMENTAL**

| parameter             | conditions/description                     | min | typ | max | units |
|-----------------------|--------------------------------------------|-----|-----|-----|-------|
| operating temperature | see derating curves                        | -40 |     | 85  | °C    |
| storage temperature   |                                            | -55 |     | 125 | °C    |
| storage humidity      | non-condensing                             | 5   |     | 95  | %     |
| case temperature      | at full load, Ta=71°C                      |     |     | 105 | °C    |
| vibration             | 10~55 Hz for 30 min. along X, Y and Z axis |     | 10  |     | G     |

# **MECHANICAL**

| parameter     | conditions/description                         | min | typ | max | units |
|---------------|------------------------------------------------|-----|-----|-----|-------|
| dimensions    | DIN-rail mount: 76 x 31.5 x 25.8               |     |     |     | mm    |
|               | DIN-rail mount with heatsink: 76 x 31.5 x 29.7 |     |     |     | mm    |
| case material | aluminum alloy                                 |     |     |     |       |
| weight        | DIN-rail mount                                 |     | 70  |     | g     |
|               | DIN-rail mount with heatsink                   |     | 78  |     | g     |

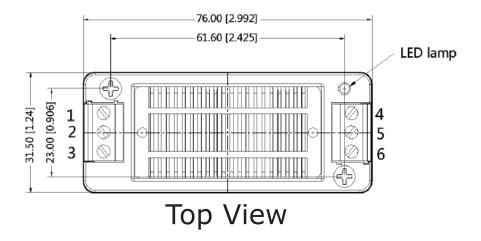

# **MECHANICAL DRAWING**

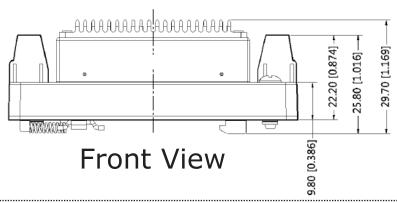
### **DIN-RAIL MOUNT**

units: mm[inch] tolerance:  $\pm 0.5[\pm 0.02]$ 

wire range: 24~12 AWG Mounts to TS35 rails

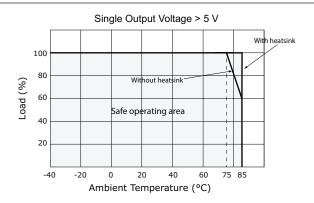
| PIN CONNECTIONS |                  |                |  |  |
|-----------------|------------------|----------------|--|--|
| PIN             | Single<br>Output | Dual<br>Output |  |  |
| 1               | CTRL             | CTRL           |  |  |
| 2               | GND              | GND            |  |  |
| 3               | Vin              | Vin            |  |  |
| 4               | 0V               | -Vo            |  |  |
| 5               | Trim             | 0V             |  |  |
| 6               | +Vo              | +Vo            |  |  |

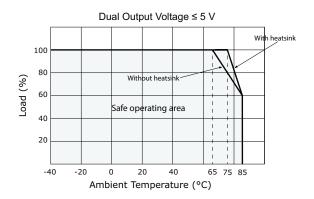


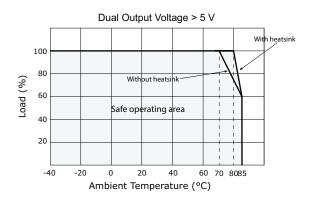


#### **DIN-RAIL MOUNT WITH HEATSINK**

units: mm[inch] tolerance:  $\pm 0.5[\pm 0.02]$ 

wire range: 24~12 AWG Mounts to TS35 rails


| PIN CONNECTIONS |                  |                |  |
|-----------------|------------------|----------------|--|
| PIN             | Single<br>Output | Dual<br>Output |  |
| 1               | CTRL             | CTRL           |  |
| 2               | GND              | GND            |  |
| 3               | Vin              | Vin            |  |
| 4               | 0V               | -Vo            |  |
| 5               | Trim             | 0V             |  |
| 6               | +Vo              | +Vo            |  |




### **DERATING CURVES**









### **EMC RECOMMENDED CIRCUIT**

Figure 1

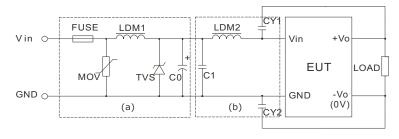



Table 1

| Recommended external circuit components |                  |                  |  |  |
|-----------------------------------------|------------------|------------------|--|--|
| Vin (Vdc)                               | 24               | 48               |  |  |
| FUSE                                    | Choose according | to input current |  |  |
| MOV                                     | S14K35           | S14K60           |  |  |
| LDM1                                    | 56µH             | 56µH             |  |  |
| TVS                                     | SMCJ48A          | SMCJ90A          |  |  |
| C0                                      | 330µF/50V        | 330µF/100V       |  |  |
| C1                                      | 1μF/50V          | 1μF/100V         |  |  |
| LDM2                                    | 4.7µH            | 4.7μH            |  |  |
| CY1                                     | 1nF/2kV          | 1nF/2kV          |  |  |
| CY2                                     | 1nF/2kV          | 1nF/2kV          |  |  |

### **TEST CONFIGURATION**

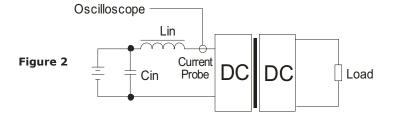



Table 2

| External components |                                 |  |
|---------------------|---------------------------------|--|
| Lin 4.7µH           |                                 |  |
| Cin                 | 220μF, ESR < 1.0Ω<br>at 100 kHz |  |

Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate source impedance. Note:

### **APPLICATION NOTES**

#### **Recommended circuit**

This series has been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load (see Figure 3). If you want to further decrease the input/output ripple, you can increase the capacitance accordingly or choose capacitors with low ESR (see Table 3). However, the capacitance of the output filter capacitor must be appropriate. If the capacitance is too high, a startup problem might arise. For every channel of the output, to ensure safe and reliable operation, the maximum capacitance must be less than the maximum capacitive load (see Table 4).

Figure 3 Single Output Cin = DC DC Cout **GND** ∽

**Dual Output** Vin ← Cout<sub>□</sub> Cin ⊑ DC DC 0V Cout **GND** ∘

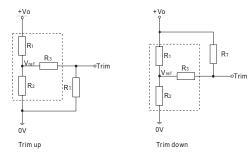
Table 3

**Dual Vout** Single Vout Cin Cout Cin Cout1 (μF) (μF) (Vdc) (µF) (Vdc)  $(\mu F)$ 3.3 100 470 ±5 100 220 5 100 470 ±12 100 100 12 100 220 ±15 100 100 15 100 220 --24 100 100

Table 4

| Single Vout<br>(Vdc) | Max. Capacitive Load<br>(μF) | Dual Vout<br>(Vdc) | Max. Capacitive Load¹<br>(μF) |
|----------------------|------------------------------|--------------------|-------------------------------|
| 3.3                  | 10200                        |                    |                               |
| 5                    | 4020                         | 5                  | 4800                          |
| 12                   | 1035                         | 12                 | 800                           |
| 15                   | 705                          | 15                 | 500                           |
| 24                   | 470                          |                    |                               |

Note:


1. For each output.

# 1. For each output.

#### **Output voltage trimming**

Leave open if not used.

Figure 4 Application Circuit for Trim pin (part in broken line is the interior of models)



Formula for Trim Resistor

up: 
$$R_T = \frac{aR_2}{R_2 - a} - R_3$$
  $a = \frac{Vref}{Vo' - Vref} \cdot R_1$   
down:  $R_T = \frac{aR_1}{R_1 - a} - R_3$   $a = \frac{Vo' - Vref}{Vref} \cdot R_2$ 

Note: Value for R1, R2, R3, and Vref refer to Table 5

R.: Trim Resistor

a: User-defined parameter, no actual meanings

Vo': The trim up/down voltage

| Vout<br>(Vdc) | R1<br>(kΩ) | R2<br>(kΩ) | R3<br>(kΩ) | Vref<br>(V) |
|---------------|------------|------------|------------|-------------|
| 3.3           | 4.801      | 2.863      | 15         | 1.24        |
| 5             | 2.883      | 2.864      | 10         | 2.5         |
| 12            | 10.971     | 2.864      | 17.8       | 2.5         |
| 15            | 14.497     | 2.864      | 17.8       | 2.5         |
| 24            | 24.872     | 2.863      | 20         | 2.5         |

Table 5

| Vout<br>(Vdc) | R1<br>(kΩ) | R2<br>(kΩ) | R3<br>(kΩ) | Vref<br>(V) |
|---------------|------------|------------|------------|-------------|
| 3.3           | 4.801      | 2.863      | 15         | 1.24        |
| 5             | 2.883      | 2.864      | 10         | 2.5         |
| 12            | 10.971     | 2.864      | 17.8       | 2.5         |
| 15            | 14.497     | 2.864      | 17.8       | 2.5         |
| 24            | 24.872     | 2.863      | 20         | 2.5         |

Note:

- 1. Minimum load shouldn't be less than 5%, otherwise ripple may increase dramatically. Operation under minimum load will not damage the converter, however, they may not meet all specifications listed.
- 2. Maximum capacitive load is tested at input voltage range and full load.
- 3. All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

### **REVISION HISTORY**

| rev. | description     | date       |
|------|-----------------|------------|
| 1.0  | initial release | 06/26/2013 |
| 1.01 | updated spec    | 08/15/2013 |
| 1.02 | updated spec    | 08/18/2014 |

The revision history provided is for informational purposes only and is believed to be accurate.



Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.