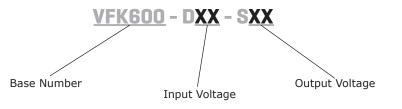


SERIES: VFK600 | DESCRIPTION: DC-DC CONVERTER

FEATURES

- up to 700 W isolated output
- rugged metal enclosure with integrated heat sink
- 2:1 input range (18~36 Vdc, 36~75 Vdc)
- single output from 12~48 Vdc
- 1,500 Vdc isolation
- over current, over temperature, over voltage, and short circuit protections
- remote on/off
- N+1 current sharing
- efficiency up to 92%



MODEL	input voltage	output voltage	output current	output power	ripple and noise ¹	efficiency
	range (Vdc)	(Vdc)	max (A)	max (W)	max (mVp-p)	typ (%)
VFK600-D24-S12	18 ~ 36	12	50	600	120	89
VFK600-D24-S24	18 ~ 36	24	25	600	240	91
VFK600-D24-S28	18 ~ 36	28	21.5	600	280	90
VFK600-D24-S32	18 ~ 36	32	19	608	320	91
VFK600-D24-S48	18 ~ 36	48	12.5	600	480	92
VFK600-D48-S12	36 ~ 75	12	50	600	120	90
VFK600-D48-S24	36 ~ 75	24	25	600	240	91
VFK600-D48-S28	36 ~ 75	28	25	700	280	91
VFK600-D48-S32	36 ~ 75	32	19	608	320	92
VFK600-D48-S48	36 ~ 75	48	12.5	600	480	92

CERCE

Notes: 1. Ripple and noise are measured at full load, 20 MHz BW with 10µF tantalum capacitor and 1µF ceramic capacitor across output

PART NUMBER KEY

INPUT

conditions/d	escription	min	typ	max	units
		18 36	24 48	36 75	Vdc Vdc
			37.7 21.7		A A
24 Vdc input	power up power down	16 15	17 16	18 17	Vdc Vdc
48 Vdc input	power up power down	34 32	35 33	36 34	Vdc Vdc
24 Vdc input	power up power down		38 40		Vdc Vdc
48 Vdc input	power up power down		77 80		Vdc Vdc
necitive legie	models ON (3.5~7.5 Vdc or open circuit)				
positive logic	models OFF (0~0.7 Vdc)				
pi filter					
	24 Vdc input n 48 Vdc input n 24 Vdc input n 48 Vdc input n 24 Vdc input 48 Vdc input 24 Vdc input 24 Vdc input 48 Vdc input 48 Vdc input 60 A time dela 30 A time dela	24 vdc input power down 48 Vdc input power up power down 24 Vdc input power up power down 48 Vdc input power up power down 48 Vdc input power up power down 9000000000000000000000000000000000000	24 Vdc input models 18 48 Vdc input models 36 24 Vdc input models, Vin = 18 Vdc, full load 36 24 Vdc input models, Vin = 36 Vdc, full load 48 24 Vdc input models, Vin = 36 Vdc, full load 16 24 Vdc input power up power down 15 48 Vdc input power up power down 34 24 Vdc input power up power down 32 24 Vdc input power up power down 32 24 Vdc input power up power down 32 60 A time delay fuse for 24 Vin models, 30 A time delay fuse for 48 Vin models 30 A time delay fuse for 48 Vin models	24 Vdc input models182448 Vdc input models364824 Vdc input models, Vin = 18 Vdc, full load37.748 Vdc input models, Vin = 36 Vdc, full load21.724 Vdc inputpower up power down1648 Vdc inputpower up power down3448 Vdc inputpower up power down3448 Vdc inputpower up power down3448 Vdc inputpower up power down3824 Vdc inputpower up power down3824 Vdc inputpower up power down3824 Vdc inputpower up power down3824 Vdc inputpower up power down3860 A time delay fuse for 24 Vin models, 30 A time delay fuse for 48 Vin models57	24 Vdc input models18243648 Vdc input models36487524 Vdc input models, Vin = 18 Vdc, full load37.724 Vdc input models, Vin = 36 Vdc, full load21.724 Vdc inputpower up power down16171848 Vdc inputpower up power down34353624 Vdc inputpower up power down3448 Vdc inputpower up power down3424 Vdc inputpower up power down3824 Vdc inputpower up power down3824 Vdc inputpower up power down7748 Vdc inputpower up power down7748 Vdc inputpower up power down7760 A time delay fuse for 24 Vin models, 30 A time delay fuse for 48 Vin models5

Note: 1. Open collector refer to -Vin.

OUTPUT

parameter	conditions/description	min	typ	max	units
maximum capacitive load	12 V output models 24~48 V output models	470 470		10,000 5,000	μF μF
line regulation	measured from low line to high line			±0.2	%
load regulation	measured from zero load to full load			±0.5	%
voltage accuracy				±1.5	%
load share accuracy	50~100% load		±10		%
adjustability		60		110	%
switching frequency	48 V input, 12/28/32 V output models all other models		300 250		kHz kHz
transient response	25% step load change			500	μs
temperature coefficient			±0.03		%/°C

PROTECTIONS

parameter	conditions/description	min	typ	max	units
short circuit protection	continuous				
over current protection	% nominal output current	110		150	%
over voltage protection	%Vo	115		140	%
over temperature protection	shutdown		110		°C

SAFETY AND COMPLIANCE

.....

parameter	conditions/description	min	typ	max	units
isolation voltage	for 1 minute: input to output; input to case; output to case	1,500			Vdc
isolation resistance		10			MΩ
RoHS	2011/65/EU (CE)				

.....

.....

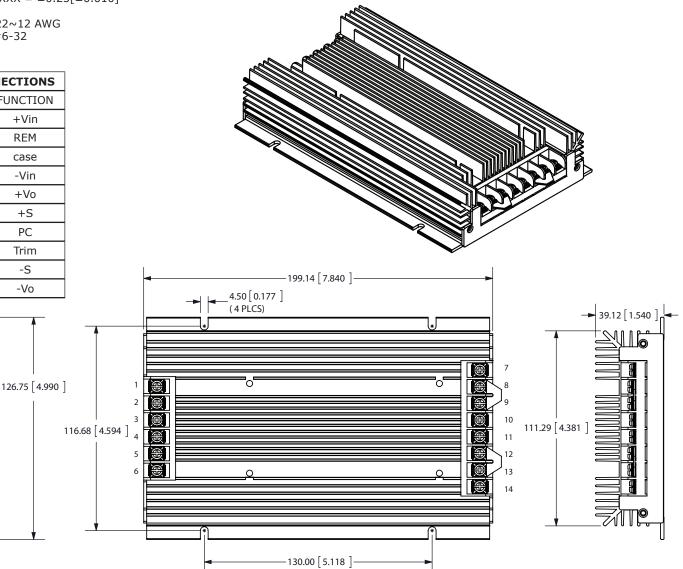
ENVIRONMENTAL

min	typ	max	units
-40		85	°C
-55		105	°C
	-40	-40	-40 85

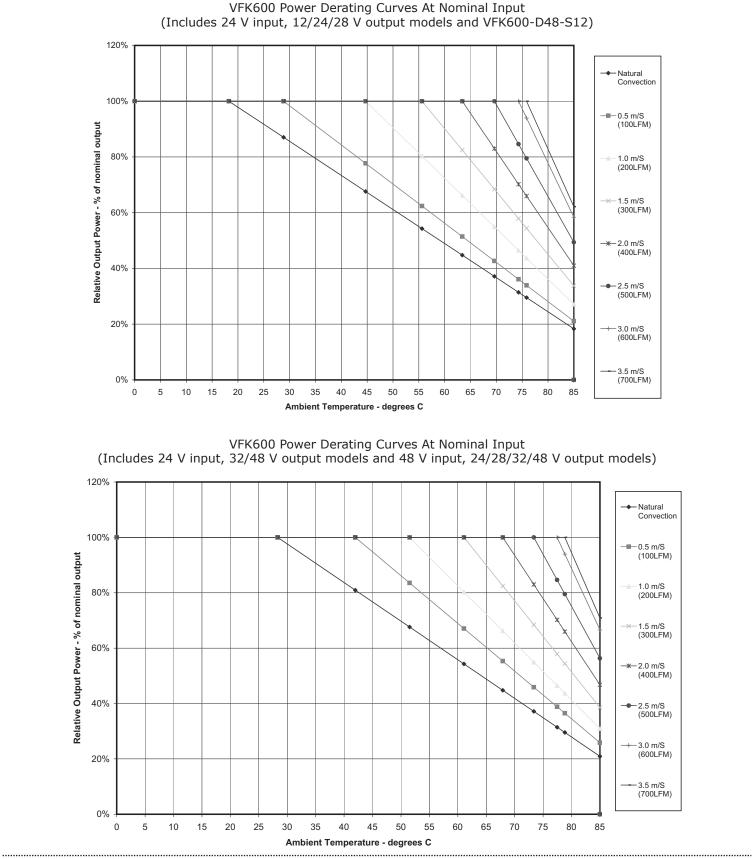
MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	199.14 x 126.75 x 39.12 (7.84 x 4.99 x 1.54 inch)				mm
case material	steel and aluminum extrusion				
weight			1.2		kg

MECHANICAL DRAWING

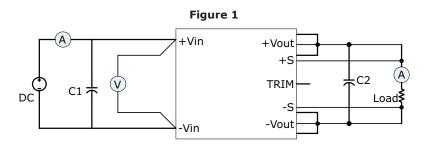

units: mm[inch] tolerance: X.XX = $\pm 0.5[\pm 0.02]$ X.XXX = $\pm 0.25[\pm 0.010]$

wire range: 22~12 AWG screw size: #6-32


PIN CO	NNECTIONS
PIN	FUNCTION
1, 2	+Vin
3	REM
4	case
5, 6	-Vin
7, 8	+Vo
9	+S
10	PC
11	Trim
12	-S
13, 14	-Vo

JUZ

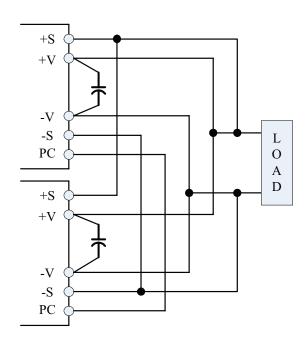
.....


DERATING CURVES

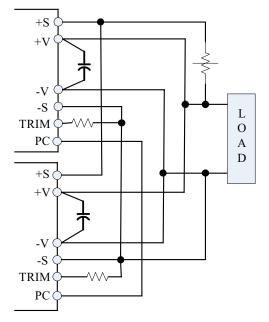
TEST CONFIGURATION

.....

Table	1
-------	---

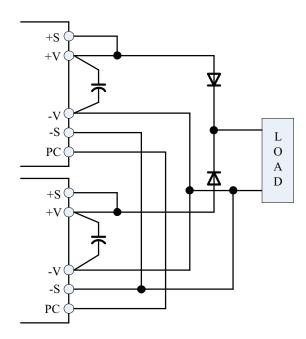

Reco	Recommended External components			
C1	220 µF/100 V			
C2	470 µF/100 V			

APPLICATION NOTES

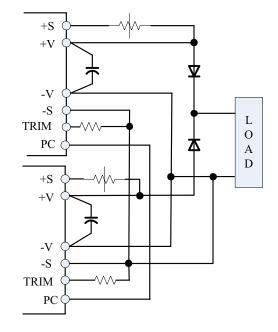

1. Parallel Operation

The VFK600 series are designed for parallel operation. When in parallel the load current can be shared equally between the two modules by connecting their PC pins. The VFK600 can be setup in two different modes to achieve parallel operation. The stan dard parallel operation is suitable when load cannot be handled by a single unit, whereas the N+1 redundant operation is suitable for loads when backup power is required.

STANDARD PARALLEL CONNECTION



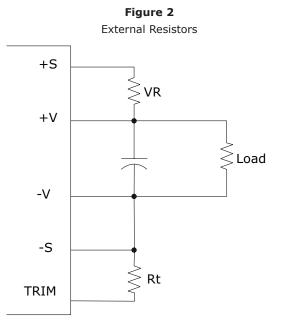
PARALLEL CONNECTION WITH PROGRAMMED AND ADJUSTABLE OUTPUT



N+1 REDUNDANT CONNECTION

.....

N+1 REDUNDANT CONNECTION WITH PROGRAMMED OUTPUT AND ADJUSTABLE OUTPUT VOLTAGE



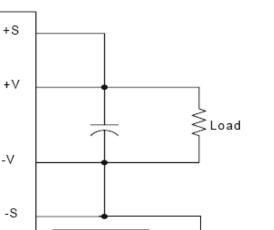
APPLICATION NOTES (CONTINUED)

2. Output Voltage Trimming

Leave open if not used.

TRIM

Trim-Up/Trim-Down Formulas


		1 74	Rt×33
Vf	_	1.24×() Rt + 33
VI	-	7.68 +(Rt×33
		/.00 +() Rt + 33

 $Vout = (Vo + VR) \times Vf$

Note: $Rt = 6.8 K\Omega$

 V_o is the nominal output voltage V_{out} is the desired output voltage (up or down) VR is the trim resistor in $K\Omega$

Figure 3 External DC Voltage

Trim-Up/Trim-Down Formulas

Vout = $V_T \times V_O$

Note: V_{τ} is the trim terminal voltage V_{o} is the nominal output voltage $V_{ou\tau}$ is the desired output voltage (up or down)

.....

Note: 1. All specifications measured at nominal line, full load, and 25°C unless otherwise specified.

DC

REVISION HISTORY

rev.	description	date
1.0	initial release	11/04/2011
1.01	derating curves added	03/12/2012
1.02	V-Infinity branding removed	08/07/2012
1.03	updated spec	03/13/2013
1.04	added parallel operation and trimming information	12/17/2013

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.