

late 01/30/2014

page 1 of 10

SERIES: VFB400W | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- 400 W isolated output
- industry standard full brick package
- 4:1 input range (9~36, 18~75 Vdc)
- single regulated outputs from 5Vdc to 48 Vdc
- 1,500 Vdc isolation
- over current protection, over voltage protection, input under voltage lockout protection, and over temp. protection
- remote on/off
- without tantalum capacitors inside
- efficiency up to 90%

MODEL		put tage	output voltage	output current	output power	ripple and noise¹	efficiency
	typ (Vdc)	range (Vdc)	(Vdc)	max (A)	max (W)	max (mVp-p)	typ (%)
VFB400W-Q24-S5	24	9~36	5	80	400	100	87.5
VFB400W-Q24-S12	24	9~36	12	33.3	400	120	86
VFB400W-Q24-S24	24	9~36	24	16.7	400	240	87
VFB400W-Q24-S28	24	9~36	28	14.3	400	280	87
VFB400W-Q24-S48	24	9~36	48	8.3	400	480	86.5
VFB400W-Q48-S5	48	18~75	5	80	400	100	89
VFB400W-Q48-S12	48	18~75	12	33.3	400	120	88.5
VFB400W-Q48-S24	48	18~75	24	16.7	400	240	90
VFB400W-Q48-S28	48	18~75	28	14.3	400	280	90
VFB400W-Q48-S48	48	18~75	48	8.3	400	480	89.5

Notes:

- 1. Ripple and noise measured at full load, 20 MHz BW with 10µF tantalum capacitor and 1µF ceramic capacitor across output. The 48 Vdc output models require a 10µF aluminum capacitor and 1µF ceramic capacitor across the output
- aluminum capacitor and $1\mu F$ ceramic capacitor across the output 2. An external input capacitor of $1000\mu F$ for 24 Vdc input models and $330\mu F$ for 48 Vdc input models is recommended to reduce input ripple voltage.

PART NUMBER KEY

Base Number

Input Voltage Output Voltage Remote On/Off Control "blank" = positive logic N = negative logic

INPUT

parameter	conditions/de	escription	min	typ	max	units
operating input voltage	24 Vdc input m 48 Vdc input m		9 18	24 48	36 75	Vdc Vdc
	24 Vdc input	power up power down		8.5 7.5		Vdc Vdc
under voltage shutdown	48 Vdc input	power up power down		17 15		Vdc Vdc
over voltage shutdown	24 Vdc input	power up power down		40 42		Vdc Vdc
	48 Vdc input	power up power down		80 83		Vdc Vdc
start-up time					250	ms
		models ON (0~0.01 mA)				
CTDI	positive logic	models OFF (1.0~10 mA)				
CTRL		models ON (1.0~10 mA)				
	negative logic	models OFF (0~0.01 mA)				
filter	pi filter					
input fuse		fuse for 24 Vin models, fuse for 48 Vin models				

OUTPUT

parameter	conditions/description	min	typ	max	units
	5V output models	680		10,000	μF
outnut canacitance!	12V output models	330		10,000	μF
output capacitance ¹	24V and 28V output models	330		4,700	μF
	48V output models	100		2,200	μF
line regulation ¹	from low line to high line			±0.2	%
load regulation ¹	from full load to no load			±0.5	%
voltage accuracy ¹				±1.5	%
load share accuracy ²	from 50~100% load		±10		%
adjustability		80		110	%
switching frequency			230		KHz
transient response	25% load step change			500	μs
temperature coefficient				±0.03	%/°C
nower good (IOC)	Vout ready: low level, sink current			20	mA
power good (IOC)	Vout not ready: open drain output, applied voltage			50	V
auxiliary output voltage/current	10 ±3 Vdc, 20 mA max.				

PROTECTIONS

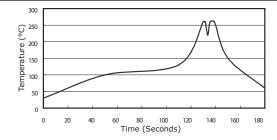
parameter	conditions/description	min	typ	max	units
short circuit protection	continuous				
over current protection		110		150	%
over voltage protection		115		140	%
over temperature protection	shutdown		110		°C

^{1.} Minimum capacitor values are required on the output to maintain the specified regulation. 2. Excludes 5 Vdc output models.

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	for 1 minute, input to output, input to case, or output to case	1,500			Vdc
isolation resistance		10			MΩ
safety approvals	UL 60950				
MTBF	at full load, 25 °C, as per MIL-HDBK-217F	340,000			hours
RoHS	2011/65/EU (CE)				

ENVIRONMENTAL


parameter	conditions/description	min	typ	max	units
operating case temperature	see derating curve	-40		100	°C
storage temperature		-55		110	°C
humidity	non-condensing			95	%

SOLDERABILITY

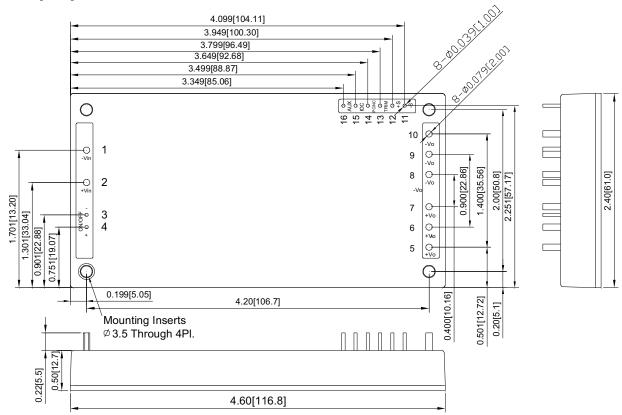
parameter	conditions/description	min	typ	max	units
wave soldering	see wave soldering profile			260	°C

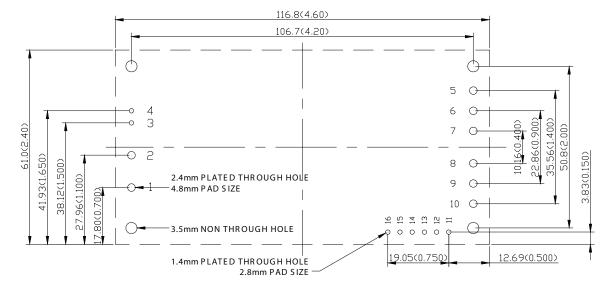
Notes:

- 1. Soldering materials: Sn/Cu/Ni
 2. Ramp up rate during preheat: 1.4°C/s (from 50°C to 100°C)
 3. Soaking temperature: 0.5°C/s (from 100°C to 130°C), 60±20 seconds
 4. Peak temperature: 260°C, above 250°C for 3~6 seconds
 5. Ramp down rate during cooling: -10°C/s (from 260°C to 150°C)

MECHANICAL

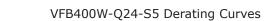
parameter	conditions/description	min	typ	max	units
dimensions	4.60 x 2.40 x 0.50 (116.8 x 61.0 x 12.7 mm)				inch
case material	aluminum baseplate with plastic case				
weight			220		g

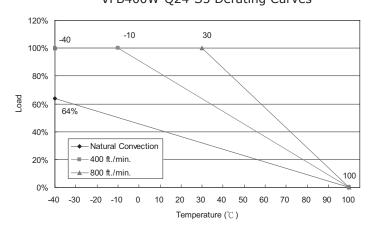

MECHANICAL DRAWING

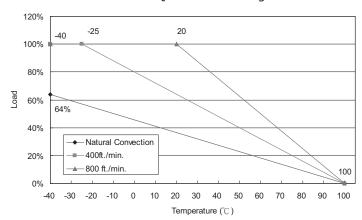

units: inch[mm]

tolerance: $X.XX = \pm 0.02[\pm 0.5]$ $X.XXX = \pm 0.010[\pm 0.25]$

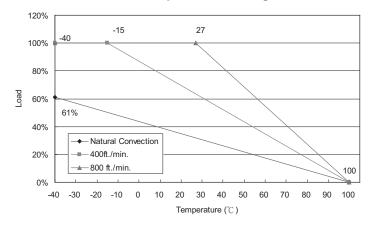
pin diameter tolerance: $\pm 0.004[\pm 0.1]$

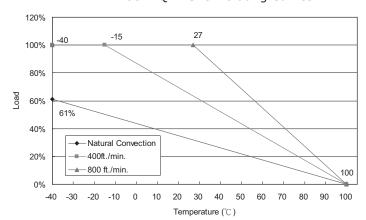


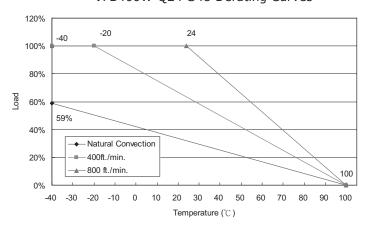


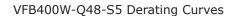

PCB Layout Top View

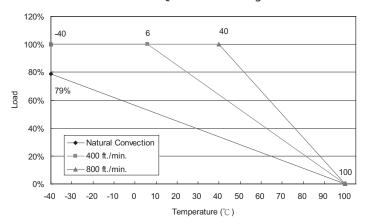
DERATING CURVES



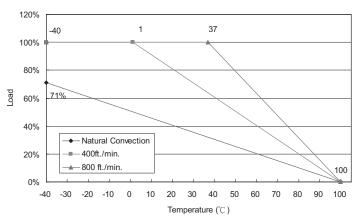

VFB400W-Q24-S12 Derating Curves


VFB400W-Q24-S24 Derating Curves

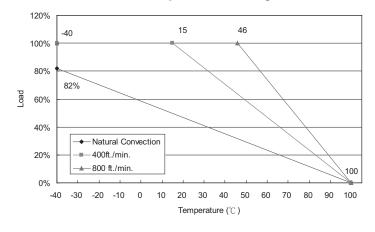

VFB400W-Q24-S28 Derating Curves

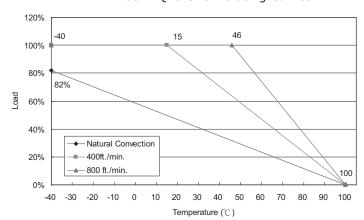


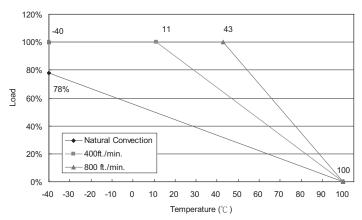
VFB400W-Q24-S48 Derating Curves



DERATING CURVES (CONTINUED)




VFB400W-Q48-S12 Derating Curves


VFB400W-Q48-S24 Derating Curves

VFB400W-Q48-S28 Derating Curves

VFB400W-Q48-S48 Derating Curves

APPLICATION NOTES

Parallel Operation

The VFB400W series (excluding the 5 Vdc output models), are designed for parallel operation. When in parallel the load current can be shared equally between the two modules by connecting their PC pins. The VFB400W can be setup in two different modes to achieve parallel operation. The standard parallel operation is suitable when load cannot be handled by a single unit, whereas the N+1 redundant operation is suitable for loads when backup power is required.

Figure 1 Standard Parallel Connection

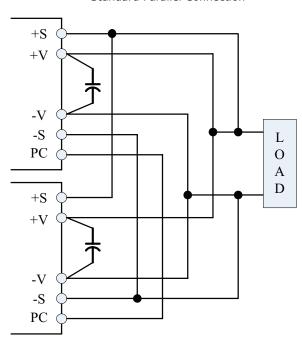


Figure 3 N+1 Redundant Connection

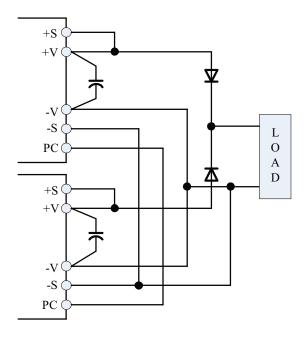


Figure 2 Parallel Connection With Programmed And Adjustable Output

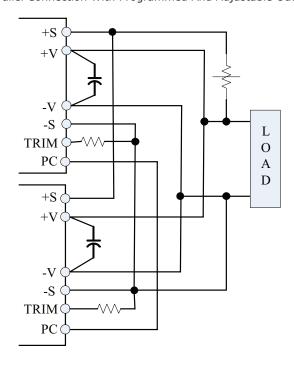
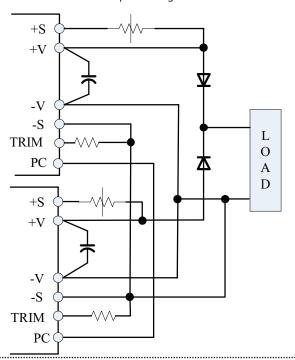



Figure 4 N+1 Redundant Connection With Programmed Output And Adjustable Output Voltage

APPLICATION NOTES (CONTINUED)

Output Voltage Trimming

Leave open if not used.

Figure 5

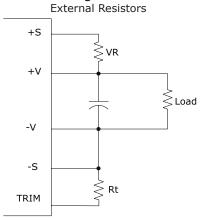
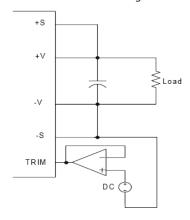



Figure 6 External DC Voltage

Trim-Up/Trim-Down Formulas

$$Vf = \frac{1.24 \times (\frac{Rt \times 33}{Rt + 33})}{7.68 + (\frac{Rt \times 33}{Rt + 33})}$$

$$Vout = (Vo + VR) \times Vf$$

Note: Rt = $6.8 \text{ K}\Omega$

 ${\rm V}_{\rm O}$ is the nominal output voltage

 V_{OUT} is the desired output voltage (up or down) VR is the trim resistor in $K\Omega$

Trim-Up/Trim-Down Formulas

Vout =
$$V_T \times V_O$$

Note: $\boldsymbol{V}_{\!\scriptscriptstyle T}$ is the trim terminal voltage V_{o} is the nominal output voltage

 V_{OUT} is the desired output voltage (up or down)

1. Models VFB400W-Q24-S24, S28 & S48 require a minimum input voltage of 13 Vdc and models VFB400W-Q48-S24, S28 & S48 require a minimum input voltage of 22 Vdc in order to trim between 100~110%.

ON/OFF Control

The converter's ON/OFF function can be controlled from the input side or from the output side. The maximum current through the ON/OFF pin is 10mA. The resistor value has to be set appropriately to avoid the maximum current through the ON/OFF pins.

(B)

Controlling the ON/OFF terminal from the input side. (A) Recommended R1 value is $12K\Omega$ (1.0W) for $48V_{\scriptscriptstyle TN}$ and 6KΩ (0.5W) for $24V_{IN}$

Controlling the ON/OFF terminal from the output side. Recommended R2 value is $4.3K\Omega$ (0.1W)

Figure 7

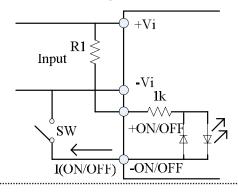
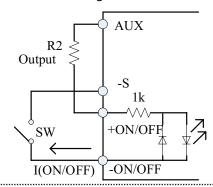
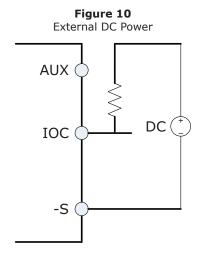



Figure 8



APPLICATION NOTES (CONTINUED)

4. IOC Signal

Normal and abnormal operation of the converter can be monitored by using the I.O.C signal. Output of this signal monitor is located at the secondary side and is open collector output, you can use the signal by the internal aux power supply or the the external DC supply as the following figures, the ground reference is the -Sense. This signal is LOW when the converter is normally operating and HIGH when the converter is disabled or when the converter is abnormally operating.

Figure 9 Internal AUX Power AUX IOC -S

5. Test Configuration

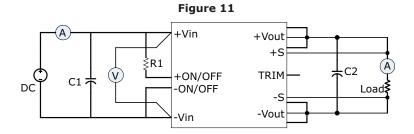


Table 1

Recommended External components				
C1	$< 0.7~\Omega$ ESR 1000 μ F/50 V (24 Vin models) 330 μ F/100 V (48 Vin models)			
C2	Choose according to the output capacitance (see page 2)			

Notes:

- 1. All specifications measured at nominal line, full load, and 25°C unless otherwise specified.
- 2. Remote on/off control has to be connected for the converter to operate.
 3. If the remote sense feature is not to be used, the +sense pin should be connected to the +Vout pin and the -sense pin should be connected to the -Vout pin.

REVISION HISTORY

rev.	description	date
1.0	initial release	01/30/2014

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.