MDL48 Series

MOTIEN TECHNOLOGY

High Efficiency Step Down LED Driver

Features

- RoHS-compliant 24 Pin DIL Package
- Constant Current Output (±7% Output Current Accuracy)
- LED Driver Current 150 / 250 / 300 / 350 / 500 / 600 / 700 / 1000 mA
- Power LED Driver
- Wide Input Voltage Range: 7V to 60V (65V for 0.5sec.)
- Output Power 9 / 14 / 17 / 20 / 29 / 34 / 40 / 48W
- Driver LED Strings of up to 57V (2V to 57V)
- High Efficiency (up to 97%)
- PWM/Digital Dimming and Analog Voltage Dimming
- Open and Short LED Protection
- -40°C ~85°C Operation Temperature Range
- With MLCC Capacitors only

Application

- 12V,24V,36V and 48V Lighting Systems
- Household/Commercial lighting
- Suitable for high illumination LED
- Power limited (battery) lighting system

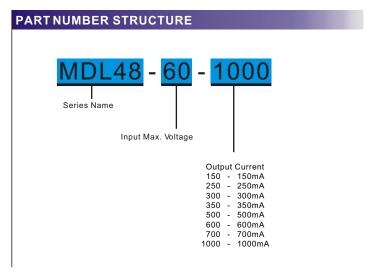
M DL48 Series is a high efficiency step-down converter optimized to drive high current LEDs. The control algorithm allows highly efficient and accurate LED current regulation. The device operates from an input 7Vdc to 60Vdc and provides an externally adjustable output current of up to 1000mA and output power up to 48 watts. Compact size of DIL24 allows designer to integrate this driver together with LED module. UL 94V-0 grade molded case with high grade filling material provide excellent fire proof characters.

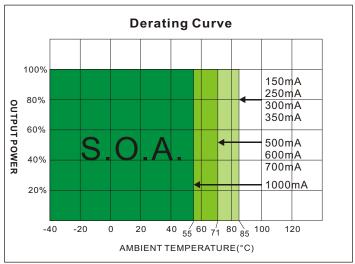
(Typical at Ta = +25°C, nominal inputvoltage, rated output current unless otherwise specified.

Electrical Specifications:	
Input Voltage (Vdc)	7V ~ 60V,48Vdc Nominal
Input Filter	Capacitor
Output Voltage Range (Vin = 60)	V) 2V to 57V
Output Current Range (Vin - Vol	ut > 3V) See table
Output Current Accuracy	See table
Output Power	See table
Ripple and Noise, (20 MHz bandw	vidth) See table
Maximum Efficiency at Full Lo	oad 97%
Capacitive Load	470uF
Operating Frequency	20 kHz ~500 kHz
Short Circuit Protection	Regulated at Rated Output Current
Temperature Coefficient	±0.03%/°C, max.
Thermal Impedance (Nature Con	nvection) +30°C/W
Safety Standard : (designed to me	eet) IEC / EN 60950-1

Dimming Control and ON/OFF Control (Leave Open if NotUsed):					
Vadu Pin Input Voltage Range	0V to 1.25V				
VadJ Pin Drive Current (VADJ = 1.25V)	<1mA				
Analog Dimming Adjust Output Current (Vin - Vout < 30V) Control Voltage Range Limits	25% to 100%				
On	$0.3V < V_{ADJ} < 1.25V$				
Off	V _{ADJ} < 0.15V				
PWM Dimming					
Recommended Maximum Operation Freque	ency 1KHz				
Adjust Output Current	0% to 100%				
Remote ON/OFF					
DC/DC ON 0.3V < VADJ	< 1.25V or open circuit				
DC/DC OFF (Shutdown) VADJ < 0.15V or Sho	rt circuit pin 2,3 and pin 4				
Quiescent Input Current in Shutdown Mode (Vi	$n = 60V$) 100 μ A, max.				

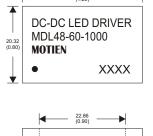
Environmental Specifications	
Operating Temperature Range	-40°C to +85°C(See Derating Curve)
Storage Temperature Range	-40°C to +125°C
Humidity	95% rel H
Maximum Case Tempeature	+110°C
Cooling	Nature Convection
Reliability Calculated MTBF(MIL-I	HDBK-217F) >950 Khrs
Soldering Temperature (1.5mm from	case 10 sec. max.) +260°C, max.

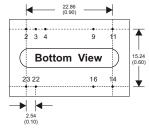

Physical Specifications					
Case Material	Non-Conductive Black Plastic(UL94V-0 rated)				
Potting Material	Epoxy (UL94V-0 rated)				
	Silicon (UL94V-0 rated)				
Pin Material	Ø0.5mm Brass Solder-coated				
Weight	17.7g				
Dimensions	1.25"x0.80"x0.49"				

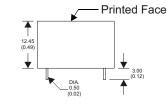

EMC SPECIFICATIONS	
EMI Radiated & Conducted Emissions	EN 55015 (CISPR22)
EMS Immunity EN 61547	
IEC 61000-4-2	Perf. Criteria A
IEC 61000-4-3	Perf. Criteria A
IEC 61000-4-4	Perf. Criteria A
IEC 61000-4-5	Perf. Criteria A
IEC 61000-4-6	Perf. Criteria A
IEC 61000-4-8	Perf. Criteria A

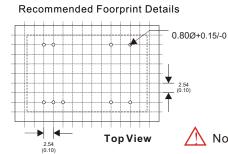
NOTE

- 1.Reversed power sourcedamages the circuit, No connection is allowed between input ground and output.
- 2.DO NOT operate the driver over output power.
- 3. Leave pin VadJ open if not in use, ground pin to shut down the converter. Connecting VadJ to Vin damages the circuit.
- 4. Maximum output open voltage is equal to input voltage.
- 5.Input filter components (C1, C2, L, C3) are used to help meet conducted emissions requirement for the module.
- 6. The test Conditions of IEC 61000-4-5 is ±0.5kV input DC power ports.






MODEL SELECTION GUIDE


	INPUT	OUTPU	Т	OUTPUT Current	ОИТРИТ			
MODEL NUMBER	Voltage Rang e	Voltage Range	Current	Accuracy	Power	EFFICIE NCY	Ripple and No ise	Capac itor
	(Vdc)	(Vdc)	(mA)	(%)	(W) Max.	@FL(%) Max.	mVp-p M ax.	Load(uF)
MDL48-60-150	7-60	2 ~57	150	±8	9	60 - 97	150	470
MDL48 -60-250	7-60	2 ~57	250	±7	14	65 - 97	200	470
MDL48-60-300	7-60	2 ~57	300	±6	17	67 - 97	250	470
MDL48-60-350	7-60	2 ~57	350	±5	20	66 - 97	300	470
MDL48-60-500	7-60	2 ~57	500	±5	29	69 - 97	400	470
MDL48-60-600	7-60	2 ~57	600	±5	34	69 - 97	450	470
MDL48-60-700	7-60	2 ~57	700	±5	40	69 - 97	500	470
MDL48-60-1 000	7-60	2 ~48	1000	±5	48	64 - 97	800	470

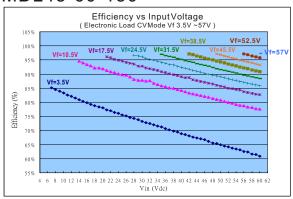
MECHANICAL DIMENSION

24 Pin DIL Package

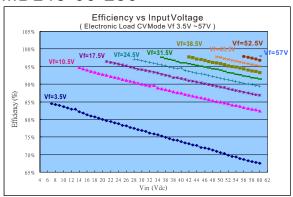
Notes : All dimensions are typical in millimeters (inches).

1. Pin diameter: 0.5±0.05 (0.02±0.002)

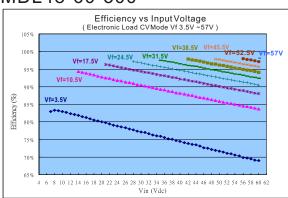
2. Pin pitch and length tolerance: ±0.35 (±0.014)

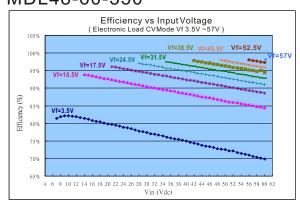

3. Case Tolerance: ±0.5 (±0.02)

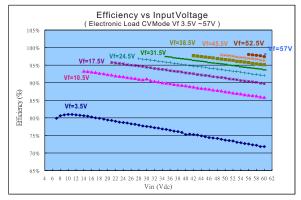
Pin#	CONNECTIONS		
2,3	- V Input - DC Supply		
4	VADJ	PWM/ON/OFF or not used	
9,11	- V Output	LED Cathode Connection	
14,16	+V Output	LED Anode Connection	
22,23	+V Input	+DC Supply	

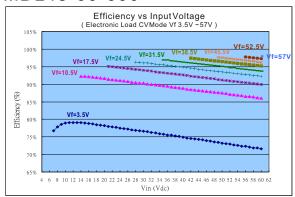

No connection is allowed between input and output

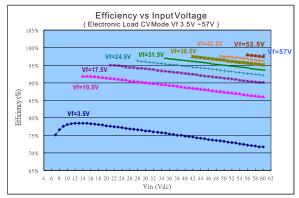
Typical Operating Conditions

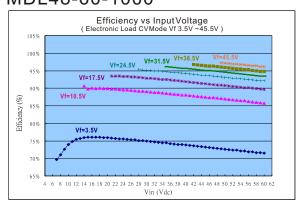

MDL48-60-150


MDL48-60-250


MDL48-60-300

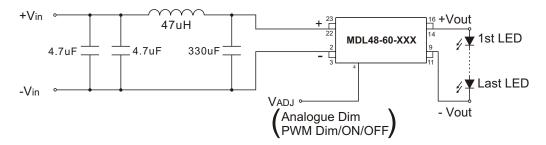

MDL48-60-350


MDL48-60-500

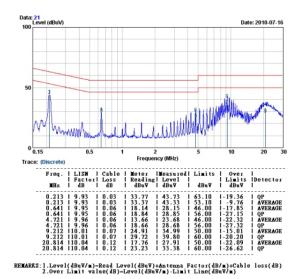

MDL48-60-600

MDL48-60-700

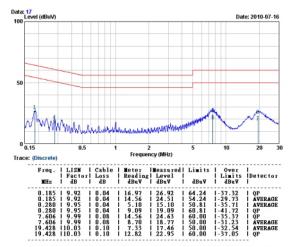
MDL48-60-1000



EMC Characteristics meet EN55022

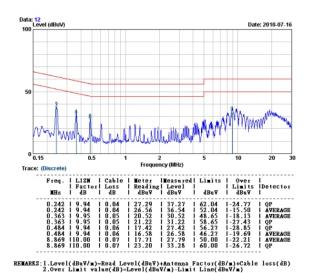

EMC Countermeasures Suggestion

Input filter components (C1, C2, L, C3) are used to help meet conducted emissions requirement for the module. These components should be mounted as close as possible to the module; and all leads should be minimized to decrease radiated noise.

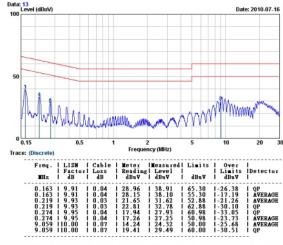


Conducted Emissions Test

Vin=60V Vout=30V(LED Load Vf=3.3V, 9LED≒30V)



Vin=12V Vout=3.3V(LED Load Vf=3.3V, 1LED=30V)



REMARKS:1.Level(dBuV/m)-Read Level(dBuV)+Antenna Factor(dB/m)+Cable loss(dB)
2.Over Limit value(dB)-Level(dBuV/m)-Limit Line(dBuV/m)

Vin=60V Vout=48V(LED Load Vf=3.3V, 14LED=15V)

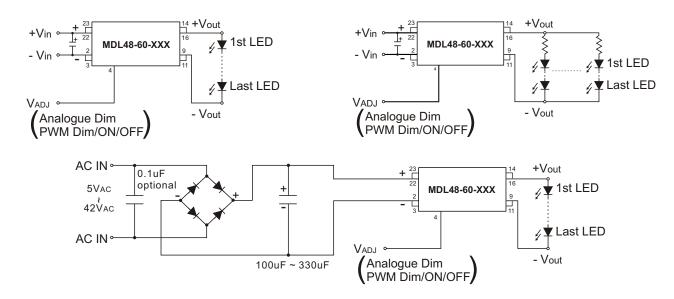
Vin=7V Vout=3.3V(LED Load Vf=3.3V, 1LED = 30V)

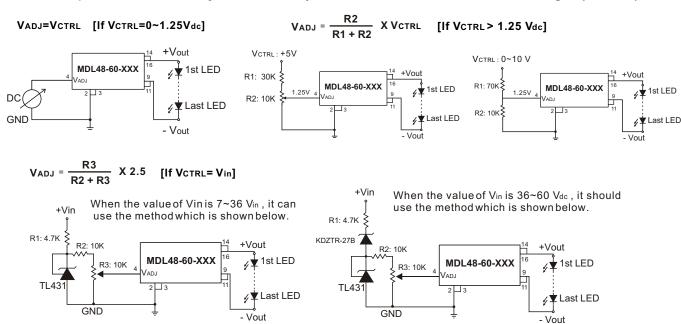
REMARKS: 1. Level(dBuV/m)-Read Level(dBuV)+Antenna Factor(dB/m)+Cable loss(dB)
2. Over Limit value(dB)-Level(dBuV/m)-Limit Line(dBuV/m)

ISO 9001 .ISO 14001 .IECQ QC080000

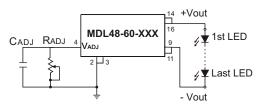
No. 9, Keji 2nd Rd., Tainan Technology Industrial Park, Tainan City 70955, Taiwan

Tel: 886-6-384 2366 (Rep.) Fax: 886-6-384 2399 Website: www.motien.com.tw


Email: sales@motien.com.tw


Last Update: SEP.25.2012 Rev.2

Typical Application


Output Current Adjustment By External DC Control Voltage (VCTRL)

The nominal output current (loutnom) is given by: loutnom \approx lout x $\frac{V_{ADJ}}{1.25}$

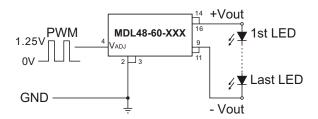
Resistor dimming

By connecting a variable resistor between ADJ and GND, simple dimming can be achieved. Capacitor CADJ is optional for better AC mains interference and HF noise rejection. Recommend value of CADJ is 0.22uF.

The current output loutnom can be determined using the equation:

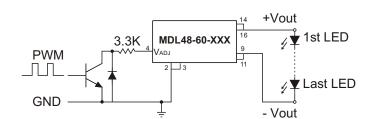
$$Iout_{nom} = \frac{Iout X RADJ}{(RADJ + 50K)}$$

If the value of RADJ is 0 to 2M ohm, the maximum adjust range of output current is 25% to 90%. (For Vin-Vout < 30V)

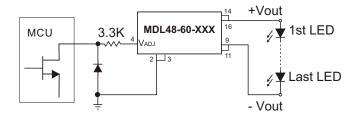

Typical Application

Output Current Adjustment By PWM Control

Directly driving ADJ input

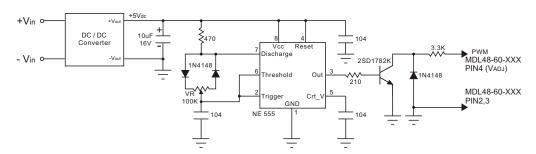

A Pulse Width Modulated (PWM) signal with duty cycle DPWM can be applied to the ADJ pin, as shown below

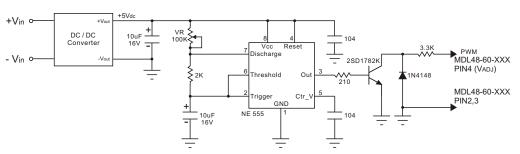
Iout_{nom} ≈ Iout x DPWM [If PWM frequency < 200Hz, for 0.1 < DPWM < 1]


Driving the ADJ input via open collector transistor The diode and resistor suppress possible high amplitude negative spikes on the ADJ input resulting from the drain-s ource capacitance of the transistor. Negative spikes at the input to the device should be avoided as they may cause

errors in output current, or erratic device operation.

Driving the ADJ input from a microcontroller


Another possibility is to drive the device from the open drain output of a microcontroller. The diagram below shows one method of doing this:


The diode and resistor suppress possible high amplitude negative spikes on the ADJ input resulting from the drain-s ource capacitance of the FET. Negative spikes at the input to the device should be avoided as they may cause errors in output current, or erratic device operation.

Output Current Adjustment By PWM Control (Dimming)

To avoid visible flickerthe PWM signal must be greater than 100Hz.

Output Current Adjustment By PWM Control (Flash)

