

FEATURES

- ► Small 57.9 x 36.8 x12.7 mm Package
- ► Input Ranges 43-101VDC or 66-160VDC
- ▶ Meets Railway Standard EN50155 (IEC60571) and EN45545-2
- ► Compliance to Railway EMC Standard EN50121-3-2
- ► High Efficiency up to 92%
- ► No Minimum Load Requirement
- ▶ Operating Temp. Range -40°C to +85°C.
- ► Reinforced Insulation 3000 VACrms
- ► Under-Voltage Shutdown
- ► Remote On/Off
- ► UL/cUL/IEC/EN 60950-1 Safety Approval
- ► Metal Case with isolated Baseplate
- 3 Years Product Warranty

PRODUCT OVERVIEW

The MINMAX MTQZ50 series is a new generation of high performance, convection-cooled 50W dc-dc converters designed specifically for railway applications. They are available for the popular railway input voltages of either 72(43-101)VDC or 110(66-160)VDC.

The converters conform to railway industry transient standard EN50155 and complies also with EMC standard EN50121-3-2.

Advanced circuit topology provides a very high efficiency up to 92% which allows operating temperatures range of -40°C to +85°C. For improved heat dissipation the modules can be supplied with a heatsink. Further product features include high, reinforced insulation, remote On/Off control, under-voltage shutdown as well as overload and over-temperature protection.

Model Selection	Guide								
Model Number	Input Voltage			Over Voltage	Max. capacitive Load	Efficiency (typ.)			
	(Range)		Max.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA(typ.)	VDC	μF	%
MTQZ50-72S05		5	10000	771	50		6.2	17000	90
MTQZ50-72S12	72 (43 ~ 101)	12	4170	755	45	35	15	2950	92
MTQZ50-72S15		15	3330	754	45		18	1900	92
MTQZ50-72S24		24	2080	762	50		30	740	91
MTQZ50-110S05		5	10000	505	40		6.2	17000	90
MTQZ50-110S12	110	12	4170	500	35	25	15	2950	91
MTQZ50-110S15	(66 ~ 160)	15	3330	494	35	35	18	1900	92
MTQZ50-110S24		24	2080	499	40		30	740	91

Input Specifications								
Parameter	Model	Min.	Тур.	Max.	Unit			
General	Input Specifications comply to							
anut Curae Valtare (100me meu)	72V Input Models	-0.7		165				
Input Surge Voltage (100ms. max)	110V Input Models	-0.7		250				
Observe The seaded Meller as	72V Input Models			43	VDC			
Start-up Threshold Voltage	110V Input Models			66	VDC			
Index Voltage Chutdour	72V Input Models		40					
Jnder Voltage Shutdown	110V Input Models		63					
Start-up Time	All Madala		0.35		S			
nput Filter	All Models	Internal Pi Network						

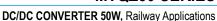
Parameter	Condi	tions	Min.	Typ.	Max.	Unit		
Output Voltage Setting Accuracy	Full Load and	Full Load and Nominal Vin			±1.0	%		
Line Regulation	Vin=Min. to Max			±0.2	%			
Load Regulation	Min. Load to			±0.3	%			
Min.Load		No minimur	n Load Requirement					
Dinale 9 Naine	0-20 MHz Bandwidth	24V Output			150	mV _{P-P}		
Ripple & Noise ₍₃₎		Other Ooutput			100	mV _{P-P}		
Transient Recovery Time	2EV Load Cto	n Changa		250		μsec		
Transient Response Deviation	25% Load Ste	p Change (2)		±3	±5	%		
Temperature Coefficient					±0.02	%/°C		
Over Current Protection		Current Limitation at	150% typ. of lout	max., Hiccup				
Short Circuit Protection		Hiccup	Mode 0.5Hz typ.	Mode 0.5Hz tvp.				

General Specifications							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
I/O Isolation Voltage (60 sec.)	reinforced insulation	3000			VACrms		
Isolation Voltage Input/Output to case		1500			VDC		
I/O Isolation Resistance	500 VDC	1000			ΜΩ		
I/O Isolation Capacitance	100KHz, 1V			3000	pF		
Switching Frequency			320		KHz		
MTBF(calculated)	MIL-HDBK-217F@25°C Full Load, Ground Benign	314,900			Hours		
Safety Standards	cUL/UL 60950-1, IEC/EN 60950-1, EN50155,IEC60571						

Remote On/Off Control								
Parameter	Conditions	Min.	Тур.	Max.	Unit			
Converter On	3.5V ~ 12V or Open Circuit							
Converter Off	0V ~ 1.2V or Short Circuit							
Control Input Current (on)	Vctrl = 5.0V		0.5		mA			
Control Input Current (off)	Vctrl = 0V		-0.5		mA			
Control Common	Referenced to Negative Input							
Standby Input Current	Nominal Vin		2.5		mA			

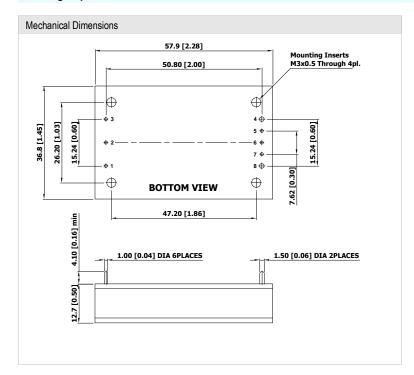
Output Voltage Trim									
Parameter	Conditions	Min.	Тур.	Max.	Unit				
Trim Up / Down Range (See Page 5)	% of Nominal Output Voltage	±10			%				

Environmental Specifications						
Parameter	Conditions/Model	Min.	Ma	Unit		
Falametei	Conditions/Model	IVIII I.	without Heatsink	with Heatsink	Offic	
Operating Temperature Range	MTQZ50-72S12		72	75		
Natural Convection (8)	MTQZ50-72S15, MTQZ50-110S15		12	75		
Nominal Vin, Load 100% Inom.	MTQZ50-72S24	-40	68	71	°C	
(for Power Derating see relative Derating Curves)	MTQZ50-110S12, MTQZ50-110S24		00			
	MTQZ50-72S05, MTQZ50-110S05		63	67		
	Natural Convection without Heatsink 7.5					
	Natural Convection with Heatsink 6.8		-			
	100LFM Convection without Heatsink	6.1				
Thermal Impedance	100LFM Convection with Heatsink	4.1				
Thermal Impedance	200LFM Convection without Heatsink	5.3		-	°C/W	
	200LFM Convection with Heatsink	3.3		-		
	400LFM Convection without Heatsink	3.9				
	400LFM Convection with Heatsink 2.2		-			
Base-plate Temperature Range		-40	+1	05	°C	
Over Temperature Protection (Base Plate)			+1	10	°C	
Storage Temperature Range		-50	+1	25	°C	
Cooling Test	Compliance to	o IEC/EN600	68-2-1			
Dry Heat	Compliance t	o IEC/EN600	68-2-2			
Damp Heat	Compliance to	IEC/EN600	68-2-30			
Shock & Vibration Test	Compliance	to IEC/EN 6	1373			
Fire Protection Test	Compliand	ce to EN4554	5-2			
Operating Humidity (non condensing)		5	9	5	% rel. H	
Lead Temperature (1.5mm from case for 10Sec.)			26	60	°C	



EMC Specifi	cations								
Parameter		Standards & Level	Performance						
General		Compliance with EN 50121-3-2 Railway	ay Applications						
EMI		EN55022, EN55011, FCC part 15	Class A (see Page 5)						
	EN55024								
	ESD	EN61000-4-2 air ± 8KV, Contact ± 6KV	A						
EMC	Radiated immunity	EN61000-4-3 10V/m	A						
EMS	Fast transient(7)	EN61000-4-4 ±2KV	A						
	Surge ₍₇₎	EN61000-4-5 ±2KV	A						
	Conducted immunity	EN61000-4-6 10Vrms	A						

Power Derating Curve 100 100 80 %) % 60 Output Power Output Power 40 40 20 20 0 100 110 40 -40 Ambient Temperature °C MTQZ50-72S12,MTQZ50-72S15,MTQZ50-110S15 MTQZ50-72S12,MTQZ50-72S15,MTQZ50-110S15 Derating Curve without Heatsink Derating Curve with Heatsink 100 80 (%) Output Power (%) 60 40 -40 0 20 100 110 -40 0 20 40 60 100 110 Ambient Temperature °C MTQZ50-72S24,MTQZ50-110S12,MTQZ50-110S24 MTQZ50-72S24,MTQZ50-110S12,MTQZ50-110S24 Derating Curve without Heatsink Derating Curve with Heatsink 100 100 80 % Output Power (%) 60 60 **Dutput Power** 40 40 100 110 -40 20 60 100 110 Ambient Temperature °C MTQZ50-72S05,MTQZ50-110S05 Derating Curve without Heatsink MTQZ50-72S05,MTQZ50-110S05 Derating Curve with Heatsink


Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a 1µF MLCC and a 10µF Tantalum Capacitor.
- 4 Other input and output voltage may be available, please contact factory.
- To order the converter with heatsink, please add a suffix -HS (e.g. MTQZ50-72S05-HS) to order code.
- 6 Part number for heat sink MT-HS1.
- 7 To meet EN61000-4-4 & EN61000-4-5 by adding a capacitor across the input pins. Suggested capacitor: CHEMI-CON KXG 470μF/200V.
- 8 Please parallel a capacitor across the input pins under specification testing. Suggested capacitor: CHEMI-CON KXJ 68μF/200V.
- 9 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 10 Specifications are subject to change without notice.

Package Specifications

Pin Connection	ns
Pin	Function
1	+Vin
2	Remote On/Off
3	-Vin
4	-Vout
5	* -Sense
6	Trim
7	* +Sense
8	+Vout

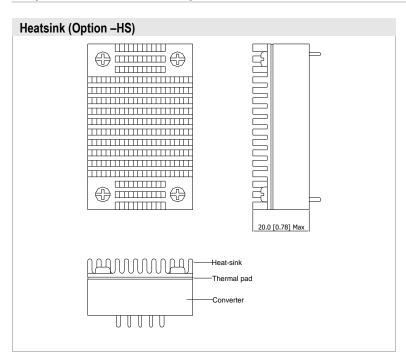
- * If remote sense not used the +sense should be connected to +output and -sense should be connected to -output Maximum output deviation is 10% inclusive of trim
- ➤ All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

- ➤ Pin diameter Ø 1.0 ±0.05 (0.04±0.002)
- ► Pin diameter Ø 1.5 ±0.05 (0.06±0.002)

Physical Characteristics

 Case Size
 : 57.9x36.8x12.7 mm (2.28x1.45x0.50 inches)


 Case Material
 : Aluminum Frame with Black Anodized Coating

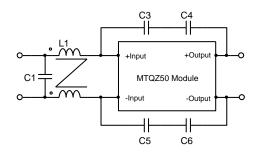
 Top Side Base Material
 : Aluminum Plate

 Bottom Side Base Material
 : Non-conductive Black Plastic Base Plate

 Potting Material
 : Epoxy (UL94-V0)

 Weight
 : 61g

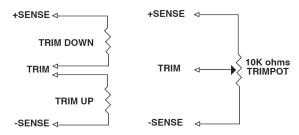
Physical Characteristics


Heatsink Material : Aluminum

Finish : Black Anodized Coating

Weight : 13g

- ▶ The advantages of adding a heatsink are:
- To improve heat dissipation and increase the stability and reliability of the DC/DC converters at high operating temperatures.
- 2. To increase operating temperature of the DC/DC converter, please refer to Derating Curve.


Recommended Filter for EN 55011&55022, class A; FCC part 15, level A Compliance

Model Type	L1	C1	C3	C4	C5	C6
MTQZ50-72SXX	450	CHEMI-CON KXG Series	2200pF	2200pF	2200pF	2200pF
MTQZ50-110SXX	450µH/450µH	68µF/200V	3KV	3KV	3KV	3KV

External Output Trimming

Output can be externally trimmed by using the method shown below

MTQZ50-XXS05 Trim Table

WIT QZ30-7070	TQ200-7/YOUG THIII TABIC											
Trim down	1	2	3	4	5	6	7	8	9	10	%	
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts	
Rd=	138.88	62.41	36.92	24.18	16.53	11.44	7.79	5.06	2.94	1.24	KOhms	
Trim up	1	2	3	4	5	6	7	8	9	10	%	
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts	
Ru=	106.87	47.76	28.06	18.21	12.30	8.36	5.55	3.44	1.79	0.48	KOhms	

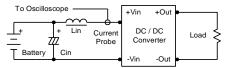
MTQ750-XXS12 Trim Table

WITQZJU-AAG	11QZ30-AA312 TIIII Table											
Trim down	1	2	3	4	5	6	7	8	9	10	%	
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts	
Rd=	413.55	184.55	108.22	70.05	47.15	31.88	20.98	12.80	6.44	1.35	KOhms	
Trim up 1 2 3 4 5 6 7 8 9 10 %											%	
min up	l l		J	4	ິ	0	1	0	9	10	7/0	
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts	

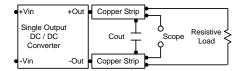
MTQZ50-XXS15 Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	530.73	238.61	141.24	92.56	63.35	43.87	29.96	19.53	11.41	4.92	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts
v out											

MTQZ50-XXS024 Trim Table


Trim down	1	2	3	4	5	6	7	8	9	10	%	
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts	
Rd=	598.66	267.78	157.49	102.34	69.25	47.19	31.44	19.62	10.43	3.08	KOhms	
Trim up	1	2	3	4	5	6	7	8	9	10	%	
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts	
Ru=	487.14	218.02	128.31	83.46	56.55	38.61	25.79	16.18	8.70	2.72	KOhms	

Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega$ at 100~KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

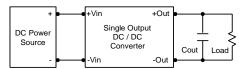
Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 2) during a logic low is -500µA.

Overcurrent Protection

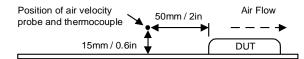

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



Maximum Capacitive Load

The MTQZ50 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

