

FEATURES

- ► Fully encapsulated Plastic Case
- **▶** 2 Mounting Versions:
 - Chassis Mounting with Screw Terminals
 - DIN-Rail Mounting
- ► Ultra-wide Input Ranges: 9-36VDC and 18-75VDC
- ► Extended Operating Temp.Range -40°C to +85°C
- ► LED Output Indicator
- ► Remote On/Off
- Input Filter meets EN 55022, class A and FCC, level A
- ► Safety to UL/cUL/IEC/EN 60950-1
- ▶ 3 Years Product Warranty

PRODUCT OVERVIEW

The MINMAX MQWI40C series is a new range of regulated DC/DC converter modules with ultra-wide 4:1 input voltage ranges. The product comes in a fully encapsulated module with screw terminal block and is suitable for easy chassis mounting or also for DIN-rail mounting.

Featuring an extended operating temperature range from -40° to +85°C, EMC compliance to EN 61000-6-1 standard these modules have been designed particulary for industrial applications.

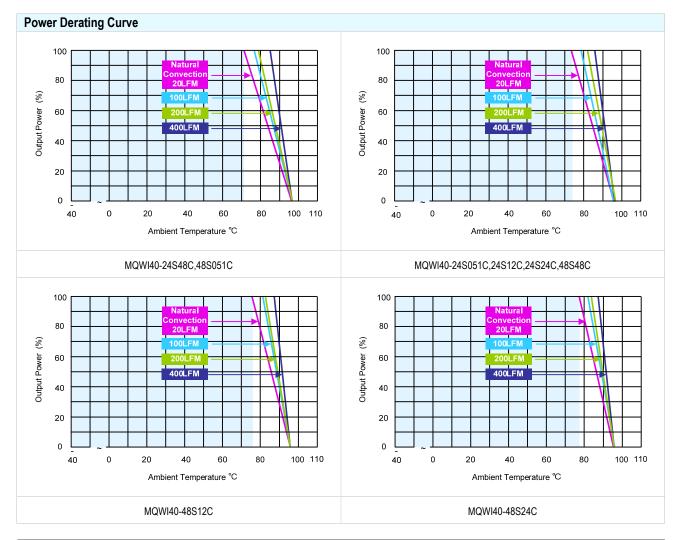
	Input Voltage	Output Voltage	Output Current	out Current Input Current Max. @ Max. Load @ No Load		Max. capacitive Load	Efficiency (typ.) @Max. Load	
Model Number	(Range)	Voltage	Max.			Lodd		
	VDC	VDC	mA(typ.)	mA(typ.)	mA(typ.)	μF	%	
MQWI40-24S051C		5.1	8000	1889	90	13600	90	
MQWI40-24S12C	24	12	3330	1850	90	2400	90	
MQWI40-24S24C	(9 ~ 36)	24	1670	1856	90	600	90	
MQWI40-24S48C		48	835	1876	90	150	89	
MQWI40-48S051C		5.1	8000	955	55	13600	89	
MQWI40-48S12C	48	12	3330	915	55	2400	91	
MQWI40-48S24C	(18 ~ 75)	24	1670	908	55	600	92	
MQWI40-48S48C		48	835	928	55	150	90	

Input Specifications						
Parameter		Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (100 ms max.)		24V Input Models	-0.7		50	
		48V Input Models	-0.7		100	
Start-Up Threshold Voltage		24V Input Models			9	VDC
		48V Input Models		18		VDC
Under Voltage Lockout		24V Input Models		7.5		
		48V Input Models		16		
Power Up		Nominal Vin and Constant Resistive Load			30	ms
Start Up Time	Remote On/Off	Nominal vin and Constant Resistive Load			30	ms
Short Circuit Current		Hiccup Mode, 0.25Hz typ.				

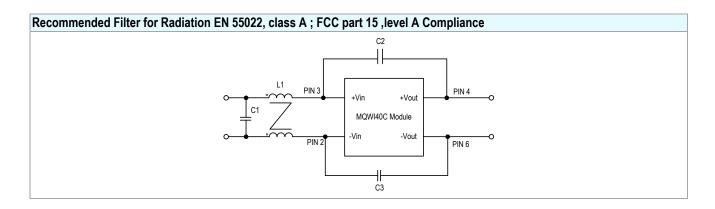
E-mail:sales@minmax.com.tw Tel:886-6-2923150

Output Specifications						
Parameter	C	Conditions		Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0		%Vnom.
Line Regulation	Vin=Min. to	o Max. @Full Load		±0.5		%
Load Regulation	Min. Lo	oad to Full Load		±1.0		%
Minimum Load		No minimum Load Requirement				
		5.1V Output Models			100	mV _{P-P}
Ripple & Noise	20MHz bandwith	12V & 24V Output Models			150	mV _{P-P}
		48V Output Models			200	mV _{P-P}
Transient Recovery Time	25% Loa	25% Load Step Change ₍₂₎		250		μsec
Over Voltage Protection	Zene	r diode clamp		120		% of Vo
Temperature Coefficient				±0.02		%/°C
Overshoot					5	%
Over Current Protection	Cu	Current Limitation at 150% typ. of lout max., Hiccup Mode, automatic recovery				
Short Circuit Protection		Hiccup Mo		ecovery		

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage		2500			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100KHz, 1V		2400	pF	
Switching Frequency			285		KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	364700 Hours			Hours
Safety Approvals	UL/cUL 60950-1 recognition,IEC/EN60950-1 (CB-report)				

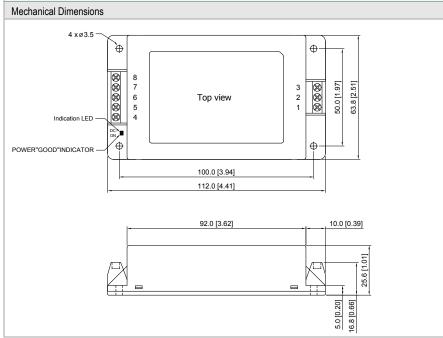

Remote On/Off Control						
Parameter	Conditions Min. Typ. Max				Unit	
Converter On	3.5V ~	3.5V ~ 12V or Open Circuit				
Converter Off	0V ~ 1	0V ~ 1.2V or Short Circuit				
Control Input Current (On)	Vctrl = 5.0V			0.5	mA	
Control Input Current (Off)	Vctrl = 0V0.5		-0.5	mA		
Control Common	Referenced to Negative Input					
Standby Input Current	Supply Off & Nominal Vin		3		mA	

Environmental Specifications				
Parameter	Conditions/Model	Min.	Max.	Unit
	MQWI40-48S24C		+78	
Operating Temperature Range	MQWI40-48S12		+76	
Natural Convection (6)	MQWI40-24S051C,24S12C	-40	. 72	°C
Nominal Vin, 100% Load	MQWI40-24S24C,48S48C		+73	
	MQWI40-24S48C,48S051C		+71	
	Natural Convection	4.75		°C/W
The arrest laws a day as	100LFM Convection	3.55		°C/W
Thermal Impedance	200LFM Convection	3.10		°C/W
	400LFM Convection	1.95		°C/W
Case Temperature			+95	°C
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H
Cooling	Free-Air convection			
Lead Temperature (1.5mm from case for 10Sec.)			260	°C


EMC Specifications							
Parameter		Standards & Level Performance					
EMI	EMI Conducted Class A without adding a	Class A					
CIVII	EMI Radiated Class A external compone	EN55022, FCC part 15					
	EN55024						
	ESD	EN61000-4-2 air ± 8kV , Contact ± 4kV		A			
	Radiated immunity	EN61000-4-3 10V/m		A			
EMS	Fast transient	EN61000-4-4 ±2kV		A			
	Surge	EN61000-4-5 ±2kV		A			
	Conducted immunity	EN61000-4-6 10Vrms		A			
	PFMF	EN6100	A				

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 Part number for DIN-Rail mounting bracket: AC-DIN-02.
- 6 Natural convection means an airflow of 20LFM is not equal to still air (0 LFM).
- 7 Specifications are subject to change without notice.

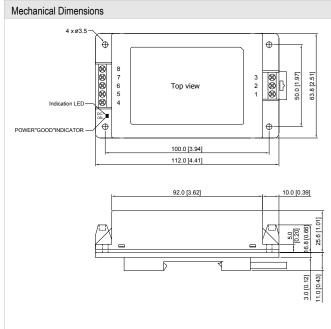


Model	L1	C1	C2	C3
MQWI40-24SXXC	175µH/175µH	4.7µF/50V	220pF	220pF
MQWI40-48SXXC	175μΗ/175μΗ	3.3µF/100V	220pF	220pF

Package Specifications Chassis Mounting

Connections				
Pin	Funtion			
1	Remote On/Off			
2	-Vin			
3	+Vin			
4	+Vout			
5	NC			
6	-Vout			
7	NC			
8	NC			

NC: No Connection


- ► All dimensions in mm (inches)
- ► Tolerance: ±0.5 (±0.02)


Physical Characteristics

Case Size : 112.0x63.8x25.6mm (4.41x2.51x1.01 inches)
Case Material : Plastic resin (flammability to UL 94V-0 rated)

Weight : 162g

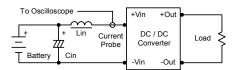
Package Specifications with DIN Rail Mounting Bracket (order code AC-DIN-02)

Physical Characteristics

Case Size : 112.0x63.8x25.6mm (4.41x2.51x1.01 inches)

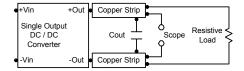
Case Material : Plastic resin (flammability to UL 94V-0 rated)

Weight : 216g


E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC/DC Power Module 40W

Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ KHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

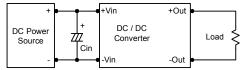
Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Technical Notes

Remote On/Off

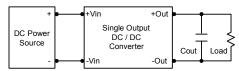
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -100μ A.

Overcurrent Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

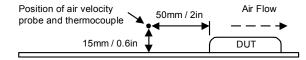
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0 Ω at 100 KHz) capacitor of a 10µF for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



Maximum Capacitive Load

The MQWI40C series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Minmax Technology Co., Ltd.