

FEATURES

- ► 4200VAC reinforced Insulation
- Insulation rated for 300VAC Working Voltage
- ► Medical Safety to UL/CSA/EN/IEC 60601-1 3rd Edition
- ≥ 2 MOOP rated
- ► Wide 2:1 Input Voltage Range
- ► Fully regulated Output Voltage
- ► Low Leakage Current
- ➤ Operating Temp. Range –40°C to +75 °C
- ▶ Input Filter meets EN 55022, class A and FCC, level A
- ➤ Overload Protection
- ≥ 2"x 1" Plastic Package
- ► 3 Years Product Warranty

PRODUCT OVERVIEW

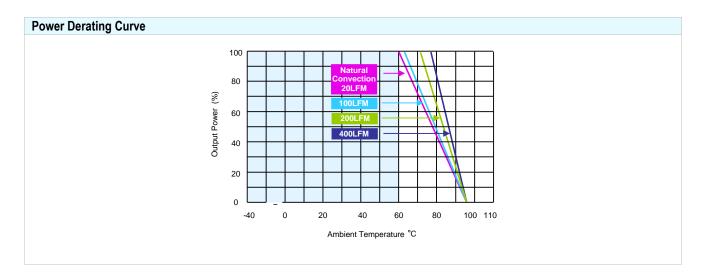
The MINMAX MKW10M series is a new range of high performance DC/DC converter modules with a reinforced insulation system .The I/O- isolation voltage is specified for 4200VACrms. The product comes in a compact 2"x1" industry standard package. All 15 models features wide 2:1 input voltage range and fully regulated output voltage. The MKW10M DC/DC converters offer an economical solution for demanding applications in industrial and medical instrumentation requesting a certified supplementary or reinforced insulation system to comply with industrial or latest medical safety standards.

Model Selection Gu	uide							
Model Number	Input Voltage	Output Voltage	Output Current	Input Current		Reflected Ripple	Max. capacitive Load	Efficiency (typ.)
	(Range)		Max.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA (typ.)	mA(typ.)	μF	%
MKW10-12S05M		5	1600	907	-	100	1000	74
MKW10-12S051M	40	5.1	1600	907				75
MKW10-12S12M	12	12	835	1044	30		470	80
MKW10-12D12M	(9 ~ 18)	±12	±417	1042			220#	80
MKW10-12D15M		±15	±333	1028				81
MKW10-24S05M		5	2000	559		50	1000 470 220#	75
MKW10-24S051M	0.4	5.1	2000	559				76
MKW10-24S12M	24	12	835	516	20			81
MKW10-24D12M	(18 ~ 36)	±12	±417	516				81
MKW10-24D15M		±15	±333	508				82
MKW10-48S05M		5	2000	280	10	25	1000 470 220#	75
MKW10-48S051M	48	5.1	2000	280				76
MKW10-48S12M		12	835	258				81
MKW10-48D12M	(36 ~ 75)	±12	±417	258				81
MKW10-48D15M		±15	±333	254				82

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models	7	8	9	VDC
Start-Up Threshold Voltage	24V Input Models	13	15	18	
	48V Input Models	30	33	36	
	12V Input Models			8.5	
Under Voltage Shutdown	24V Input Models			16	
-	48V Input Models			34	
Short Circuit Input Power				3000	mW
Internal Power Dissipation	All Models			4000	mW
Conducted EMI	Compliance to EN 55022, class A and FCC part 15, class A				

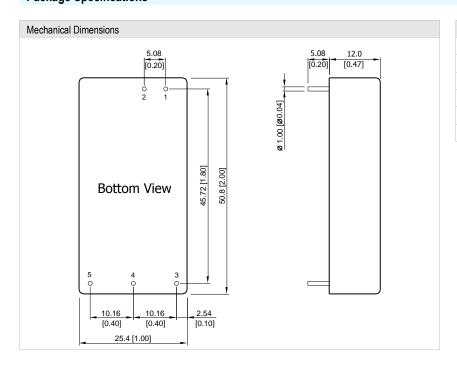
E-mail:sales@minmax.com.tw Tel:886-6-2923150


Output Specifications						
Parameter	Cor	Conditions		Typ.	Max.	Unit
Output Voltage Setting Accuracy					±1.0	%Vnom.
Output Voltage Balance	Dual Output,	Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=M	in. to Max.		±0.3	±0.5	%
Load Decidation	lo=15%	lo=15% to 100%		±0.5	±1.0	%
Load Regulation	lo=5%	lo=5% to 100%		±0.6	±1.2	%
D'anta 0 Nata	0.00 MH - D 4 - 144	5V & 5.1V Output Models			100	mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	Other Output Models			150	mV _{P-P}
Min.Load		No m	inimum Load Requ	uirement		
Over Load Protection				150		%
Transient Recovery Time	050/ 11	050/ 1 10/ 01		300	600	μ sec
Transient Response Deviation	sient Response Deviation 25% Load Step Change			±3	±5	%
Temperature Coefficient				±0.02	±0.05	%/°C
Short Circuit Protection				Continu	ious	

Isolation, Safety Standards						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage (reinforced)	60 Seconds	4200			VACrms	
Leakage Current	240VAC, 60Hz			10	μΑ	
I/O Isolation Resistance	500 VDC	10			GΩ	
I/O Isolation Capacitance	100KHz, 1V		60	80	pF	
	cUL/UL60950-1, CSA C22.2 No. 60950-1-03					
Safety Standards	UL60601-1,CSA C22.2 No.601-1,					
	IEC/EN 60950-1, IEC/EN 60601-1 3rd Edition, 2 MOOP					
Approvals	IEC60950-1 CB report, cUL/UL 60950-1 certificate					
Αμμισναίο	UL60601-1 UL certificate					

General Specifications					
Parameter	Conditions	Min.	Typ.	Max.	Unit
Switching Frequency		120	150	180	KHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000			Hours

Environmental Specifications				
Parameter	Conditions	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-40	+75	°C
Case Temperature			+95	°C
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H
Altitude			4000	m
Cooling		Free-Air convecti	on	
Lead Temperature (1.5mm from case for 10Sec.)			260	°C



Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 6 Specifications are subject to change without notice.

Package Specifications

Pin Connections					
Pin	Single Output Dual Output				
1	+Vin	+Vin			
2	-Vin	-Vin			
3	+Vout	+Vout			
4	No Pin	Common			
5	-Vout	-Vout			

All dimensions in mm (inches)

Folerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

Pin diameter Ø 1.0 ±0.05 (0.04±0.002)

Physical Characteristics

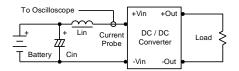
Case Size : 50.8x25.4x12.0mm (2.0x1.0x0.47 inches)

Case Material : Non-Conductive Black Plastic (flammability to UL 94V-0 rated)

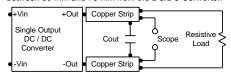
Pin Material : Copper Alloy with Gold Plate Over Nickel Subplate

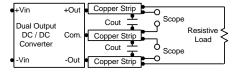
Weight : 24.5g

E-mail:sales@minmax.com.tw Tel:886-6-2923150


www.minmax.com.tw

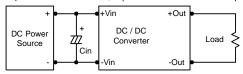
Test Setup


Input Reflected-Ripple Current Test Setup

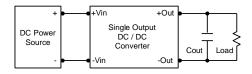

Input reflected-ripple current is measured with a inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

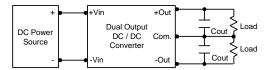
Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47μ F ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.



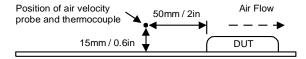
Technical Notes


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 1.00 kHz) capacitor of a 10μ F for the 12V input devices and a 4.7μ F for the 24V input devices and a 2.2μ F for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μ F capacitors at the output.



Maximum Capacitive Load

The MKW10M series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Minmax Technology Co., Ltd.