

MAU400 SERIES

DC/DC CONVERTER 1W, Reinforced Insulation, Medical Safety

FEATURES

- Small SIP Package
- Reinforced Insulation rated for 300VAC Working Voltage
- I/O-isolation 3000VACrms
- Industrial & Medical Safety Approval
- Operating Temp. Range -25°C to +85°C
- Low Coupling Capacity
- 3 Years Product Warranty

PRODUCT OVERVIEW

The MINMAX MAU400 series is a range of 1W DC/DC converter modules providing a high I/O-isolation voltage of 3000VAC in a small SIP-package. There are 12 models available for 5VDC or 12VDC input voltage and single- or dual-output voltage.

This product offers an economical solution for many applications in industrial controls and Instrumentation, consumer electronics and everywhere where a certified supplementary or reinforced insulation system is required to comply with relative safety standards.

Model	Input	Output	Output Current		Input Current		Load	Max. capacitive	Efficiency
U U	Voltage	Voltage					Regulation	Load	(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load			@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	% (max.)	μF	%
MAU401	5	5	200	4	303	55	10	680 220#	66
MAU402		12	80	2	291		8		66
MAU403		15	65	1	295		8		66
MAU404	(4.5 ~ 5.5)	±5	±100	±2	303		10		66
MAU405		±12	±40	±1	267		8		72
MAU406		±15	±35	±1	287		8		73
MAU411		5	200	4	126	- 30	10	680	66
MAU412		12	80	2	121		8		66
MAU413	12 (10.8 ~ 13.2)	15	65	1	123		8		66
MAU414		±5	±100	±2	126		10		66
MAU415		±12	±40	±1	108		8	220#	74
MAU416		±15	±35	±1	117		8		75

For each output

Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
In the last Dense	5V Input Models	4.5	5	5.5	_	
Input Voltage Range	12V Input Models	10.8	12	13.2	VDC	
	5V Input Models	-0.7		9	VDC	
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		29		
Reverse Polarity Input Current				0.3	А	
Internal Filter Type	All Models	LC Filter				
Internal Power Dissipation				650	mW	
Output Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Accuracy			±1.0	±3.0	%	
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%	
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%	
Load Regulation	lo=20% to 100%	See Model Selection Guide				
Ripple & Noise	0-20MHz bandwith			150	mV _{P-P}	
Temperature Coefficient			±0.01	±0.02	%/°C	

E-mail:sales@minmax.com.tw Tel:886-6-2923150 2014/09/15 REV:14 Page 1 of 4

Short Circuit Protection

www.minmax.com.tw

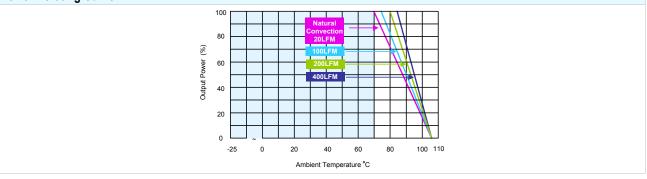
0.5 Second Max.

MAU400 SERIES

DC/DC CONVERTER 1W, Reinforced Insulation, Medical Safety

Isolation, Safety Standards

Parameter	Conditions	Min.	Тур.	Max.	Unit		
I/O Isolation Voltage (rated)	60 Seconds	3000			VACrms		
I/O Isolation Resistance	500 VDC	10			GΩ		
I/O Isolation Capacitance	100KHz, 1V		15	20	pF		
_	cUL/UL 60950-1						
Safety Standards	ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1						
	IEC/EN 60950-1, IEC/EN 60601-1 3rd Edition 2xMOOP						
Approvala	IEC 60950-1 CB Report, cUL/UL 60950-1 certificate						
Approvals	IEC 60601-1 CB Report, ANSI/AAMI ES60601-1 2xMOOP certificate						


General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency		50	80	100	KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,000,000		Hours	

Environmental Specifications

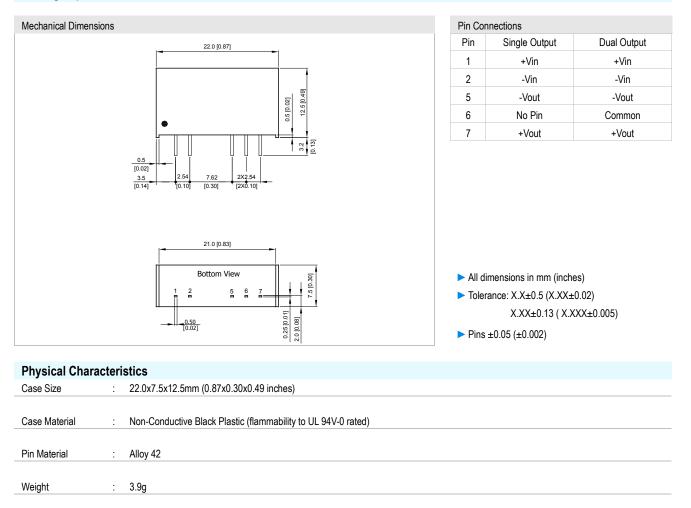
Parameter	Conditions	Min.	Max.	Unit		
Operating Ambient Temperature Range	Ambient	-25	+85	°C		
(See Power Derating Curve)	Ambient	-20				
Case Temperature			+90	°C		
Storage Temperature Range		-50	+125	C°		
Humidity (non condensing)			95	% rel. H		
Cooling	Free-Air convection					
Lead Temperature (1.5mm from case for 10Sec.)			260	C°		

Power Derating Curve

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 6 Specifications are subject to change without notice.

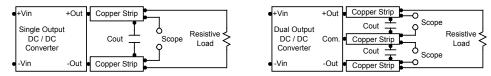
E-mail:sales@minmax.com.tw Tel:886-6-2923150


www.minmax.com.tw

MAU400 SERIES

DC/DC CONVERTER 1W, Reinforced Insulation, Medical Safety

Package Specifications

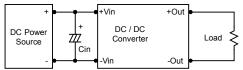


DC/DC CONVERTER 1W, Reinforced Insulation, Medical Safety

Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

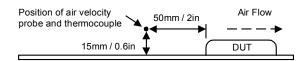

Technical Notes

Maximum Capacitive Load

The MAU400 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 220µF maximum capacitive load for dual outputs and 680µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0 Ω at 100 KHz) capacitor of a 2.2µF for the 5V input devices, a 1.0µF for the 12V input devices.


Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1.5µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

